Способ получения нанокапсул пробиотиков Российский патент 2020 года по МПК A61K9/51 

Описание патента на изобретение RU2715743C1

Изобретение относится к нанотехнологиям и ветеринарной медицине, в частности получения нанокапсул пробиотиков.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК А61K 047/02, А61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071 МПК А61K 35/10 Российская Федерация опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010 МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140 МПК А61K 009/50, А61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 г. Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул пробиотиков, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия при их получении физико-химическим методом осаждения нерастворителем с использованием четыреххлористого углерода в качестве осадителя, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование альгината натрия в качестве оболочки нанокапсул пробиотиков - в качестве их ядра, а также использование четыреххлористого углерода в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул пробиотиков в альгинате натрия при 25°С в течение 20 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул плантарум, соотношение ядро/полимер 1:3,

1 г плантарум маленькими порциями диспергируют в суспензию альгината натрия в 10 мл гексана, содержащий 1 г альгината натрия в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл хладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул метабактерина, соотношение ядро/полимер 1:1.

1 г метабактерина маленькими порциями диспергируют в суспензию 1 г альгината натрия в 10 мл гексана, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 5 мл хладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул дактоаминоварина с соотношение ядро/полимер 1:1.

1 г лактоаминоварина маленькими порциями диспергируют в суспензию 1 г альгината натрия в 10 мл гексана, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 5 мл четыреххлористхладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

Похожие патенты RU2715743C1

название год авторы номер документа
Способ получения нанокапсул сухого экстракта зверобоя 2018
  • Кролевец Александр Александрович
RU2671818C1
Способ получения нанокапсул витамина РР (никотинамида) 2020
  • Кролевец Александр Александрович
RU2729614C1
Способ получения нанокапсул виркона-С в альгинате натрия 2019
  • Кролевец Александр Александрович
RU2708616C1
Способ получения нанокапсул сухого экстракта муира пуамы (Ptychopetatum olacoides) 2019
  • Кролевец Александр Александрович
RU2699790C1
Способ получения нанокапсул экоцида в альгинате натрия 2015
  • Кролевец Александр Александрович
RU2611369C1
Способ получения нанокапсул сухого экстракта хвоща 2018
  • Кролевец Александр Александрович
RU2685232C1
Способ получения нанокапсул тринитротолуола 2018
  • Кролевец Александр Александрович
RU2697253C1
Способ получения нанокапсул сухого экстракта одуванчика 2017
  • Кролевец Александр Александрович
RU2674663C1
Способ получения нанокапсул сухого экстракта эвкалипта 2018
  • Кролевец Александр Александрович
RU2677248C1
Способ получения нанокапсул сухого экстракта алоэ 2018
  • Кролевец Александр Александрович
RU2666597C1

Реферат патента 2020 года Способ получения нанокапсул пробиотиков

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование пробиотиков и оболочки нанокапсул альгината натрия, а также использование осадителя - хладона-112 при получении нанокапсул физико-химическим методом осаждения нерастворителем.

Формула изобретения RU 2 715 743 C1

Способ получения нанокапсул пробиотиков в альгинате натрия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - пробиотики, которые осаждают из суспензии в гексане в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты путем добавления хладона-112 в качестве осадителя, при этом массовое соотношение прибиотик : альгинат натрия составляет 1:1.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715743C1

Способ получения нанокапсул спирулина в альгинате натрия 2016
  • Кролевец Александр Александрович
RU2648816C2
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
Способ получения нанокапсул экстракта хлореллы в альгинате натрия 2017
  • Кролевец Александр Александрович
RU2655620C1
Способ получения нанокапсул этилнитрата в альгинате натрия 2017
  • Кролевец Александр Александрович
RU2667404C1

RU 2 715 743 C1

Авторы

Кролевец Александр Александрович

Даты

2020-03-03Публикация

2019-01-18Подача