ГАЗОНАПОЛНЕННЫЙ ДЕТЕКТОР ДЛЯ ИЗМЕРЕНИЯ МАЛОУГЛОВОГО РАССЕЯНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ Российский патент 2020 года по МПК G01T1/18 

Описание патента на изобретение RU2715898C1

Область техники

Изобретение относится к области технической физики, а точнее к области детекторов для регистрации тепловых нейтронов, рассеянных под малыми углами, и может быть использовано в области физики конденсированных сред при изучении образцов разной природы на всех нейтронных источниках.

Уровень техники

Известен одномерный позиционно-чувствительный детектор тепловых нейтронов [Препринт ОИЯИ, Р13-2006-152, А.В. Белушкин, А.А. Богдзель, В.В. Журавлев, С.А. Кутузов, Ф.В. Левчановский, Ли Ен Че, Е.И. Литвиненко, А.С. Никифоров, Ц.Ц. Пантелеев, В.И. Приходько, А.Н. Черников, А.В. Чураков, В.Н. Швецов, "Одномерный позиционно-чувствительный детектор тепловых нейтронов"].

Детектор представляет герметически изолированный корпус из алюминиевого сплава Д16Т, материал входного окна - АМГ. В передней крышке расположено входное окно для нейтронов, с размерами 220×100 мм2.

Корпус детектора заполнен смесью из гелия-3 и тетрафторметана.

Детектор имеет два разъема для откачки или заполнения газа и для работы в проточном режиме, и два разъема для подачи высокого напряжения.

Внутри корпуса расположены две катодные, одна анодная и две дрейфовые плоскости. Анодная и катодные плоскости представляют собой текстолитовые рамки, на которые натянуты тонкие позолоченные проволочки. Толщина анодных проволочек 10 мкм, катодных - 50 мкм. Расстояние между катодами составляет 12 мм, анод расположен посредине между ними. Передняя дрейфовая плоскость такая же, как и катодная плоскость. В качестве задней дрейфовой плоскости используется сплошной лист фольгированного текстолита. Анодные проволочки намотаны с шагом 2 мм и соединены общей шиной, катодные проволочки намотаны с шагом 1 мм, объединены по две и выведены на линию задержки, которая собрана из 114 дискретных элементов.

На корпусе детектора закреплены коробки с аналоговой электроникой.

Недостатком указанного детектора является отсутствие возможности измерение второй координаты. Это приводит к невозможности оценить угловой размер неоднородности образца.

Недостатком указанного детектора также является отсутствие отверстия в центре для пропускания прямого пучка нейтронов. Это приводит к повышению фона.

Известен кольцевой многонитевой детектор медленных нейтронов с гелием-3 [Сообщения ОИЯИ, Дубна, 3-11502, Б.Н. Ананиев, А.Б. Кунченко, В.И. Лазин Ю.М. Останевич, Е.Я. Пикельнер, "Кольцевой многонитевой детектор медленных нейтронов с гелием-3", 1978 г. ]. (Прототип).

Детектор имеет, герметически изолированный корпус и по форме напоминает диск с отверстием в центре для пропускания прямого пучка нейтронов. Рабочий объем детектора (наружной диаметр 728 мм, внутренний 246 мм, глубина 40 мм). Со стороны падающего пучка нейтронов рабочий объем ограничен дюралевой крышкой толщиной 5 мм.

Корпус детектора заполнен смесью из гелия-3 и аргона.

Корпус детектора разделен на 8 камер с помощью концентрических медных перегородок. По центру каждой камеры на тефлоновые держатели натянута вольфрамовая нить с толщиной 25 мкм - анод.

Каждая камера имеет высоковольтный ввод. Несущим элементом детектора является плита из нержавеющей стали, на которой крепятся тефлоновые опоры (держатели), медные перегородки - катоды и высоковольтные вводы.

На обратной стороне несущей плиты размещены аналоговая электроника, 2 крана для откачки (заполнения) и контрольный манометр, показывающий давление газа в рабочем объеме детектора.

Недостатком указанного детектора является отсутствие возможности измерения второй координаты. Это приводит к невозможности оценить угловой размер неоднородности образца.

Раскрытие изобретения

Предлагаемое изобретение решает задачу по увеличению координатного разрешения детектора путем введения второй координаты, что повышает точность измерения местоположения неоднородностей в исследуемом образце.

Существенные признаки предполагаемого изобретения:

- Герметичный корпус с крышкой с центральным отверстием для прохождения прямого пучка и герметичными разъемами для связи с внешними устройствами.

- Внутри корпуса расположена система из заземленных концентрических колец разного диаметра, которые выполнены из гибкого упругого материала (двухсторонний фольгированный стеклотекстолит).

- Внутренний слой кольца разделен электроизоляционными слоями на сектора, которые исполняют роль отдельных катодов, взаимно ориентированных на геометрический центр детектора.

- Внешний слой кольца заземлен и исполняет роль дополнительного катода.

- Число колец равно девяти.

- Число катодов на каждом кольце одинаково и равно 16.

- Аноды расположены между катодами и выполнены в виде нитей, которые натянуты на электроизоляционных держателях.

- Для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца выполнены отверстия.

- Держатель имеет форму петли и выполнен из флюорокарбоновой лески.

- Каждый анод и каждый секторальный катод подключены к аналоговой электронике и образуют тем самым двухкоординатные детекторы.

- Аналоговая электроника расположена внутри объема корпуса.

- Аналоговая электроника, содержащая зарядочувствительный предусилитель подключенный к электронной схеме, содержащей усилитель-формирователь, и через корпусные разъемы связанная с внешней системой накопления данных.

Отличительные признаки предполагаемого изобретения:

- Все кольца выполнены из гибкого упругого материала, а именно двухстороннего фольгированного стеклотекстолита, что позволяет получить кольца с произвольным радиусом и тем самым улучшить разрешение детектора по одной координате.

- Число колец равно девяти (на одно больше), что позволяет увеличить разрешение детектора.

- Внутренний слой кольца разделен электроизоляционными слоями на сектора, которые играют роль отдельных катодов, взаимно ориентированных на геометрический центр детектора.

- Число катодов на каждом кольце одинаково и равно шестнадцати. Это дает возможность ввести в качестве параметра измерения новую координату. Введение новой координаты позволяет лучше оценить размеры неоднородностей в исследуемом образце.

- Для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца сделаны отверстия, что позволяет легко монтировать сами держатели и натягивать анодные нити.

- Держатель имеет форму петли и выполнен из флюорокарбоновой лески.

- Каждый анод и каждый секторальной катод подключены к аналоговой электронике; образованный таким образом двухкоординатный детектор дает возможность оценить угловую или осевую анизотропию рассеянных тепловых нейтронов при изучении образцов разной природы.

- Аналоговая электроника расположена внутри объема корпуса для устранения влияния импульсных наводок и снижения уровня электронных шумов.

- Аналоговая электроника, содержащая зарядочувствительный предусилитель и усилитель-формирователь, через корпусные разъемы связана с внешней системой накопление данных.

Перечень фигур.

В Лаборатории Нейтронной Физики (ЛНФ), Объединенного Института Ядерных Исследований (ОИЯИ) разработан газонаполненный детектор для измерения малоуглового рассеяния тепловых нейтронов.

1. На Фиг. 1 (Приложение 1) представлен общий вид детектора в горизонтальной плоскости.

2. На Фиг. 2 (Приложение 1) представлена в увеличенном масштабе часть концентрических колец, выполненных из гибкого упругого материала.

3. На Фиг. 3 (Приложение 2) представлен вертикальный разрез детектора.

4. На Фиг. 4 (Приложение 2) представлена блок схема детектора с аналоговой электроникой и системой накопления данных.

На Фиг. 1 (Приложение 1) представлен общий вид детектора в горизонтальной плоскости, где:

1. Корпус.

2. Герметичные разъемы для вывода сигналов с аналоговой электроники.

3. Герметичные разъемы для ввода анодного напряжения.

4. Одно из 9-ти концентрических колец.

5. Держатель для анодной нити.

6. Анодная нить.

7. Внешний металлизированный слой кольца.

8. Внутренний металлизированный слой кольца.

9. Вакуумный разъем.

10. Отверстие для прохождения прямого пучка.

Корпус 1 детектора изготовлен из дюралевого сплава в форме кольца. Для пропускания прямого пучка нейтронов в центральной части корпуса выполнено коаксиальное отверстие 10. Крышка детектора изготовлена также из дюралюминия.

Детектор имеет два герметических разъема 9 для откачки и заполнения газа, а также работы в проточном режиме; два герметических разъема для ввода высокого напряжения на аноды 3 (один рабочий и один запасной) и девять герметических разъемов типа ШР-19 для вывода анодных и катодных сигналов 2.

Внутри корпуса расположены девять заземленных со стороны внешних поверхностей концентрических колец 4 разного диаметра, являющихся частью детектора.

Аноды 6, выполнение в виде нитей из позолоченного вольфрама индивидуально для каждого кольца, натянуты на электроизоляционных держателях 5, имеющих форму петли, и выполненных из флюорокарбоновой лески.

Концентрические кольца выполнены из двухстороннего фольгированного стеклотекстолита толщиной 0.5 мм и 30 мкм медного покрытия.

Внутренний металлизированный слой каждого кольца 8 разделен на шестнадцать секторов, электрически изолированных друг от друга.

Внешний металлизированный слой каждого кольца 7 заземлен и исполняет роль катода.

На Фиг. 2 (Приложение 1) представлена в увеличенном масштабе часть концентрических колец, выполненных из гибкого упругого материала, где:

11. Сектор - катод на внутренней стороне кольца.

5. Держатель анодной нити.

4. Одно из 9-ти концентрических колец.

6. Анодная нить.

7. Внешний металлизированный слой кольца.

Внутри корпуса расположены девять заземленных со стороны внешних поверхностей концентрических колец 4 разного диаметра, являющихся частью детектора.

Аноды 6 в виде нитей из позолоченного вольфрама расположены между кольцами и натянуты на электроизоляционных держателях 5, имеющих форму петли и выполненных из флюрокарбоновой лески.

Концентрические кольца выполнены из двухстороннего фольгированного стеклотекстолита толщиной 0.5 мм с 30 мкм медным покрытием.

Внутренний металлизированный слой каждого кольца 8 разделен на шестнадцать секторов.

Внешний металлизированный слой каждого кольца 7 заземлен и исполняет роль катода.

На Фиг. 3 (Приложение 2) представлен вертикальный разрез детектора, где

12. Платы аналоговой электроники.

Для устранения влияния импульсных наводок и снижения уровня электронных шумов вся аналоговая электроника расположена внутри объема корпуса на плате 12.

Аналоговая электроника включает в себя зарядочувствительные предусилители и усилители-формирователи одного типа - 9 анодных и 144 катодных.

На Фиг. 4 (Приложение 2) представлена блок схема детектора с аналоговой электроникой и системой накопления данных, где:

13. Источник высокого напряжения.

3. Герметичный разъем для ввода высокого напряжения на аноды.

12. Аналоговая электроника. Одна из 16-ти плат.

2. Герметичные разъемы для вывода сигналов аналоговой электроники.

14. 32-х канальные блоки дискриминаторов.

15. Программируемый электронный блок контроллера.

16. Персональный компьютер.

Источник высокого напряжения 13 подключен к двум герметическим разъемам для ввода высокого напряжение на аноды 3 (один рабочий и один запасной). Для устранения влияния импульсных наводок и снижения уровня электронных шумов вся аналоговая электроника расположена внутри объема корпуса в виде платы 12. Выходы аналоговой электроники подключены к герметичным разъемам 4 для вывода сигналов, которые подключены к пяти 32-канальным блокам дискриминаторов 14, блоки дискриминаторов подключены к программируемому электронным блоку контроллера 15, с которого информация поступает на персональный компьютер 16.

Описание детектора.

Корпус Фиг. 1 (Приложение 1) детектора изготовлен из дюралевого сплава "АМЦ-б" в форме кольца с габаритами: радиус 283 мм, высота 90 мм. Для пропускания прямого пучка нейтронов в центральной части корпуса выполнено коаксиальное отверстие с радиусом 83 мм. Крышка детектора изготовлена также из дюралюминия. Корпус детектора, заполнен смесью из гелия-3 и аргона.

Детектор имеет два герметических разъема Фиг. 1 (Приложение 1) для откачки, заполнения и работы в проточном режиме, два герметических разъема для ввода высокого напряжения на аноды (один рабочий и один запасной) и герметические разъемы типа (ШР-19) для выводов анодных и катодных сигналов.

Внутри корпуса Фиг. 1 и Фиг. 2 (Приложение 1) расположены 9 заземленных с внешней стороны концентрических колец с радиусами 77.5, 98.5, 119.5, 140.5, 161.5, 182.5, 203.5, 224.5, 245.5 мм и высотой 42 мм.

Концентрические кольца выполнены из двухстороннего фольгированного стеклотекстолита толщиной 0.5 мм с 30 мкм медным покрытием.

Внутренний металлизированный слой каждого кольца Фиг. 1 и Фиг. 2 (Приложение 1) разделен на 16 секторов. Ширина электроизоляционного слоя между секторами - 2 мм. Таким образом, каждый сектор занимает ~1/1б от полного угла 2п. Количество катодных секторов 144.

Внешний металлизированный слой каждого кольца Фиг. 1 и Фиг. 2 (Приложение 1) заземлен и исполняет роль катода.

Границы всех секторов определены общими радиус-векторами, исходящими из центра детектора. Для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца выполнены отверстия.

Анодные нити Фиг. 1 и Фиг. 2 (Приложение 1) из позолоченного вольфрама диаметром 25 мкм индивидуальны для каждого кольца, расположены между кольцами приблизительно на половине высоты кольца и натянуты на электроизоляционных держателях, имеющих форму петли, и выполнены из флюорокарбоновой лески.

С каждого из 9-ти анодов и 16-ти катодов на каждом кольце снимается сигнал, который поступает на аналоговую электронику, а затем через разъемы тип ШР-19 подается на внешней систему накопления данных.

Это нововведение (секторальное разделение внутреннего металлизированного слоя концентрических колец) дало возможность ввести в качестве параметра измерений новую вторую координату.

Для устранения влияния импульсных наводок и снижения уровня электронных шумов вся аналоговая электроника расположена внутри объема корпуса в виде печатных плат Фиг. 3 и Фиг. 4 (Приложение 2). Количество плат 16 и они расположены на расстоянии 4 мм от колец.

Аналоговая электроника включает в себя зарядочувстительные предусилители и усилители формирователи одного типа - 9 анодных и 144 катодных.

Сигналы аналоговой электроники выводятся через герметичные разъемы тип ШР-19 и поступают на пять 32-канальных блоков дискриминаторов. Блоки дискриминаторов подключены к программируемому электронному контроллеру, который подключен к персональному компьютеру фиг.4 (Приложение 2).

Работа устройства

Принцип действия детектора состоит в следующем.

Образец помещается на оси коллинеарного пучка тепловых нейтронов. Коллинеарный поток обеспечивается удалением системы коллимации от источника нейтронов и является обязательным требованием для геометрических стартовых условий измерений. Обязательное требование к эксперименту - чтобы в нейтронный пучок полностью вписывались контуры образца.

Детектор помещается в плоскости перпендикулярной оси пучка нейтронов. Центр детектора должен в точности совпадать с осью. Расстояние между образцом и плоскостью детектора определяет угловое разрешение системы образец -детектор. Чем больше это расстояние, тем лучше разрешение по углу, однако вместе с тем падает эффективность измерений.

При такой экспериментальной постановке для равномерно рассеивающего образца интенсивность рассеянного пучка спадает к краям детектора по закону 1/r2, где r расстояние от оси пучка.

Рассеянные на образце под малым углам тепловые нейтроны попадают в концентрические кольца детектора. В зависимости от угла рассеяния нейтроны попадают в соответствующий детектор и взаимодействуют с газовым наполнением гелия-3 и аргона по реакции:

n+3Не→р+Т+763.77 кэВ

Приложенная разность потенциалов в детекторе создает поле между катодом и анодом, в котором происходит газовое усиление продуктов ионизации, создаваемых протонами и тритонами указанной реакции. С анодного и катодного вывода снимаются сигналы, которые поступают на аналоговую электронику, расположенную на 16-ти печатных платах на расстоянии 4 мм от колец.

Аналоговая электроника подключена с помощью разъемов типа ШР-19 к системе накопления данных для дальнейшей обработки и визуализации.

Разработанный двухкоординатный детектор позволяет повысить точность определения местоположения неоднородностей в исследуемом образце, путем введения второй координаты при изучении образцов различной природы: структуры разупорядоченных объектов, коллоидных образцов, биологических молекул в растворе, кристаллических веществ, кластерных структур жидкостей и аморфных тел, пор в различных пористых материалах и т.д.

Новая координата позволяет проводить измерения и по азимутальному углу, представляющему отклонение рассеяния нейтронов в условно выбранной координатной системе (ортогональной или полярной), лежащей в плоскости, перпендикулярной оси нейтронного пучка и с началом в точке пересечения этой оси и плоскости.

Похожие патенты RU2715898C1

название год авторы номер документа
НЕЙТРОННЫЙ СПЕКТРОМЕТР НА БАЗЕ ПРОТОННОГО ТЕЛЕСКОПА 2010
  • Богдзель Андрей Алексеевич
  • Пантелеев Цветан Ценов
  • Милков Васил Михайлов
RU2445649C1
Спектрометрическая ионизационная камера 1979
  • Якунин М.И.
SU803738A1
Позиционно-чувствительный газовый детектор тепловых и холодных нейтронов 2022
  • Колесников Александр Георгиевич
  • Залиханов Борис Жанакаитович
  • Боднарчук Виктор Иванович
  • Крюков Юрий Алексеевич
RU2797497C1
МНОГОКАНАЛЬНАЯ ИОНИЗАЦИОННАЯ КАМЕРА И ПРИБОР ДЛЯ МОНИТОРИРОВАНИЯ ПУЧКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ 2004
  • Акулиничев Сергей Всеволодович
  • Поташев Станислав Ильич
  • Драчев Александр Иванович
  • Бурмистров Юрий Миланович
  • Мордовской Михаил Вадимович
RU2279693C2
СПОСОБ РЕГИСТРАЦИИ МЕДЛЕННЫХ И БЫСТРЫХ НЕЙТРОНОВ В УСЛОВИЯХ ИНТЕНСИВНОЙ ВНЕШНЕЙ РАДИАЦИИ 2009
  • Акопджанов Артур Геннадьевич
  • Акопджанов Геннадий Антонович
RU2414725C1
Позиционно-чувствительный детектор тепловых и холодных нейтронов от компактного исследуемого образца 2023
  • Колесников Александр Георгиевич
  • Залиханов Борис Жанакаитович
  • Боднарчук Виктор Иванович
RU2816244C1
ВЗРЫВОЭМИССИОННЫЙ ДИОД 1986
  • Коренев С.А.
SU1438511A1
МАГНИТОИЗОЛИРОВАННЫЙ ВИРКАТОР 2001
  • Дубинов А.Е.
  • Ефимова И.А.
  • Коновалов И.В.
  • Макарова Н.Н.
  • Селемир В.Д.
  • Суворов В.Г.
  • Шибалко К.В.
RU2221306C2
МАГНЕТРОН 2011
  • Рейнолдс Алан
  • Уилсон Роберт Чарльз
  • Салим Кесар
  • Милсом Иэн
RU2572347C2
Рентгеновская трубка 1979
  • Шушин Василий Михайлович
SU809430A1

Иллюстрации к изобретению RU 2 715 898 C1

Реферат патента 2020 года ГАЗОНАПОЛНЕННЫЙ ДЕТЕКТОР ДЛЯ ИЗМЕРЕНИЯ МАЛОУГЛОВОГО РАССЕЯНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ

Изобретение относится к области технической физики, а именно к области детекторов для регистрации тепловых нейтронов. Сущность изобретения заключается в том, что газонаполненный детектор для измерения малоуглового рассеяния тепловых нейтронов содержит катоды, выполненные в виде системы заземленных концентрических колец разного диаметра, при этом каждое кольцо выполнено из гибкого упругого материала, внешняя и внутренняя стороны каждого кольца покрыты металлизированным слоем; внутренний слой кольца разделен электроизоляционными слоями на сектора, которые исполняют роль отдельных катодов, взаимно ориентированных на геометрический центр детектора; заземление исполнено через внешний слой кольца, который служит дополнительным катодом; для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца выполнены отверстия; каждый анод и каждый секторальный катод индивидуально подключены к аналоговой электронике, образуя двухкоординатные детекторы; аналоговая электроника расположена внутри объема корпуса. Технический результат – повышение точности измерения местоположения неоднородностей в исследуемом образце. 6 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 715 898 C1

1. Газонаполненный детектор для измерения малоуглового рассеяния тепловых нейтронов, содержащий герметичный корпус с крышкой и отверстием для прохождения прямого пучка, выполненный из дюралюминия, заполненный смесью из гелия-3 и аргона и снабженный герметичными разъемами для связи с внешними устройствами; внутри корпуса расположены: катоды, выполненные в виде системы заземленных концентрических колец разного диаметра, и аноды, расположенные между кольцами, выполненные в виде натянутых нитей, расположенных на электроизоляционных держателях, сами аноды подключены к аналоговой электронике, отличающийся тем, что каждое кольцо выполнено из гибкого упругого материала, внешняя и внутренняя стороны каждого кольца покрыты металлизированным слоем; внутренний слой кольца разделен электроизоляционными слоями на сектора, которые исполняют роль отдельных катодов, взаимно ориентированных на геометрический центр детектора; заземление исполнено через внешний слой кольца, который служит дополнительным катодом; для держателя анодных нитей в зоне электроизоляционного слоя каждого кольца выполнены отверстия; каждый анод и каждый секторальный катод индивидуально подключены к аналоговой электронике, образуя двухкоординатные детекторы; аналоговая электроника расположена внутри объема корпуса.

2. Детектор по п. 1, отличающийся тем, что кольца выполнены из двухстороннего фольгированного стеклотекстолита.

3. Детектор по п. 2, отличающийся тем, что число колец равно девяти.

4. Детектор по п. 1, отличающийся тем, что число катодов на каждом кольце одинаково.

5. Детектор по п. 4, отличающийся тем, что число катодов на кольце равно шестнадцати.

6. Детектор по п. 1, отличающийся тем, что держатель имеет форму петли и выполнен из флюорокарбоновой лески.

7. Детектор по п. 1, отличающийся тем, что аналоговая электроника, содержащая зарядочувстительный предусилитель и усилитель-формирователь, через корпусные разъемы связана с внешней системой накопления данных.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715898C1

Микроманипулятор 1947
  • Крюков В.Г.
SU146954A1
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛДИХЛОРСИЛАНА1 г-/;?Л;.'.отс1\А?-: 0
SU174185A1
УПРАВЛЕНИЕ ДЕЙСТВИЯМИ, ВЫПОЛНЯЕМЫМИ С ДЕИДЕНТИФИЦИРОВАННЫМИ ДАННЫМИ О ПАЦИЕНТЕ В ОБЛАЧНОЙ СИСТЕМЕ ПОДДЕРЖКИ ПРИНЯТИЯ КЛИНИЧЕСКИХ РЕШЕНИЙ (СППКР) 2015
  • Гросс Брайан Дэвид
  • Эльдо Иссак
RU2700980C2
US 4019057 A1, 19.04.1977.

RU 2 715 898 C1

Авторы

Богдзель Андрей Алексеевич

Милков Васил Михайлов

Пантелеев Цветан Ценов

Даты

2020-03-04Публикация

2018-03-12Подача