Способ многоочагового электровзрывного инициирования детонации в бризантном взрывчатом веществе Российский патент 2020 года по МПК F42B3/12 F42C11/00 

Описание патента на изобретение RU2716179C1

Изобретение относится к физике взрыва и физике высоких давлений. Предлагаемый способ предназначен для прямого инициирования одного или синхронно нескольких очагов детонации в бризантном взрывчатом веществе (БВВ) наносекундным электрическим взрывом проводников (ЭВП).

Электрическое инициирование детонационной волны в бризантном взрывчатом веществе может быть реализовано двумя принципиально разными способами: через процесс перехода горения в детонацию или прямым инициированием. В первом способе для воспламенения используется источник с относительно малой энергией, проволочный или фольговый мостик высокого сопротивления нагревается током до температуры воспламенения инициирующего взрывчатого вещества (ИВВ), контактирующего с одной стороны с мостиком, с другой стороны с массивом основного бризантного взрывчатого вещества, а детонационная волна возникает, в результате ускорения волны горения. Вследствие этого, переход горения в детонацию происходит на больших расстояниях от места инициирования и за длительное время. К недостаткам способа также следует отнести то, что в таких системах используются чувствительные к нагреву и механическим воздействиям ИВВ. При ударах или электромагнитных наводках возможно несанкционированное воспламенение заряда.

Во втором способе достаточно мощный источник энергии создает интенсивную ударную волну в бризантном взрывчатом веществе, при этом в области за фронтом ударной волны происходит объемный взрыв, приводящий непосредственно к формированию детонационной волны. Для создания такой ударной волны необходим локализованный источник с высоким энерговкладом. Обычно в качестве источника с такой энергией используются мощный искровой разрядник или электрически взрывающийся проводник. В последнем случае энергия, вложенная в плазму, образовавшуюся при взрыве проволочного мостика, вызывает ударную волну, инициирующую детонацию основного заряда бризантного взрывчатого вещества, которое находится в непосредственном контакте с мостиком. Вместо чувствительных к теплу и механическим нагрузкам зарядов ИВВ в данном случае применяются относительно нечувствительные бризантные взрывчатые вещества. Эти ВВ относительно устойчивы к воздействию механических нагрузок и низкоамплитудных импульсов, так как вероятность того, что проволочка случайно поглотит достаточное для своего взрыва количество энергии мала (ЭВП мостик имеет сравнительно низкое сопротивление порядка 1 Ом).

Одним из наиболее близких аналогов заявляемого способа по технической сущности и достигаемому результату от его использования является способ инициирования детонации бризантного взрывчатого вещества, описанный в книге «Вспомогательные системы ракетно-космической техники» (перевод с английского, издательство «Мир», Москва, 1970, страницы 216÷245). Этот способ электровзрывного инициирования детонации в бризантном взрывчатом веществе содержит взрывающийся элемент, который инициируется мощным электрическим импульсом разряда конденсаторной батареи (напряжением до 2,5÷3 кВ), с амплитудой тока 2÷3 кА. При взрыве проволочного мостика образуется ударная волна, вызывающая детонацию заряда БВВ. Данная система (фиг. 1а и 1б) представляет собой комплекс из трех отдельных, но взаимосвязанных компонентов: электровзрывного устройства, электрического кабеля 2 и блока питания 3. Электровзрывное устройство 1 с замкнутой цепью является концевым элементом системы и содержит проволочный мостик низкого сопротивления (менее 1 Ом), приваренный или припаянный к концевым электродам, которые изолированы друг от друга и от корпуса диэлектрическим материалом, и заряд БВВ, запрессованный в корпус вокруг проволочного мостика.

Кратко опишем работу инициатора детонационной волны созданного по способу-аналогу. При подаче электрического импульса металл проволочки в первый период времени нагревается, плавится и переходит в коллоидное состояние (смесь преимущественно нейтрального газа и капель металла), в результате сопротивление разрядного канала резко повышается до приблизительно 10÷15 Ом. Ток разряда уменьшается. Так как энергия, приобретаемая электроном между столкновениями We ~ qEλ, (где q - заряд электрона, Е - напряженность электрического поля, λ - длина свободного пробега электрона между двумя последовательными столкновениями) должна быть достаточной для ионизации газа - необходима длительная временная пауза для расширения канала. При расширении канала плотность газа падает и одновременно возрастает средняя длина свободного пробега электронов в газе, что вызывает интенсивную ударную ионизацию вследствие соударения носителей заряда, принимающую лавинообразный характер. Это так называемая стадия вторичного пробоя. В результате повторного пробоя сопротивление разрядного канала падает ниже 1 Ом и сила тока повышается до уровня, определяемого параметрами генератора (для ЭВП мостика, запитанного от высоковольтного конденсатора - до величины определяемой зарядным напряжением и импедансом разрядного контура). Энергия, вложенная в плазму, образовавшуюся при взрыве проволочного мостика, вызывает ударную волну, инициирующую детонацию основного заряда бризантного взрывчатого вещества.

Недостатки описанного способа:

1) использование короткозамкнутого электровзрывного устройства не предоставляет возможности организовать многоочаговое синхронное инициирование детонации в бризантном ВВ от одного высоковольтного источника электрической энергии.

2) большая временная задержка от момента начала протекания тока по проволочке до формирования устойчивой волны детонации. Это вызвано тем, что:

а) ток в ЭВП - мостике определяется законами разряда RLC - контура (R - резистивное сопротивление, L - индуктивность, С - электрическая емкость), поэтому фаза нагрева и плавления проволочки длится несколько сотен наносекунд,

б) для реализации повторного пробоя необходима длительная пауза, во время которой происходит существенное увеличение диаметра канала (снижение плотности). Кроме временной задержки увеличение диаметра канала приводит к снижению эффективности энерговклада после повторного пробоя, так как электрическое сопротивление плазменного канала обратно пропорционально квадрату радиуса плазменного канала.

Целью изобретения является синхронное инициирование нескольких очагов детонации и уменьшение времени от начала подачи электрического импульса до формирования ударной волны и детонации БВВ.

Эти цели достигаются за счет того, что взрыв одного или нескольких проводников осуществляется одним электрическим импульсом малогабаритного сильноточного высоковольтного наносекундного генератора, электрический импульс передается от генератора к взрывающимся проводникам по, согласованной с импедансом генератора, двухпроводной передающей линии (ρлинии ≈ ρгенератора), а взрывающиеся проводники устанавливаются в разрывах электродов этой двухпроводной линии, например, полосковой линии, в точках будущих очагов синхронной детонации. Полосковая линия представляет собой два фольговых электрода определенной ширины, расположенные параллельно и повернутые плоскостями друг к другу. Пространство вокруг взрывающихся проводников заполнено БВВ.

Пример реализации мобильной системы инициирования детонации БВВ по предлагаемому способу представлен на фиг. 2 и включает в себя: высоковольтный генератор, формирующий сильноточный импульс, двухпроводную передающую линию, взрывающиеся проводники и инициируемое бризантное взрывчатое вещество.

Формирование электрического импульса осуществляется малогабаритным генератором прямоугольных наносекундных импульсов напряжения. Сформированный электрический импульс передается на взрывающиеся проводники с помощью двухпроводной передающей линии с ρлинии ≈ ρгенератора. Взрывающиеся проводники представляют собой отрезки проволоки длиной около 1 см и диаметром 10÷50 мкм, установленные в разрывах одного или обоих электродов двухпроводной линии в местах планируемых очагов детонации. Пространство вокруг взрывающихся проводников заполнено БВВ.

При срабатывании генератора, электрический импульс (напряжением 200÷400 к В с током порядка 10 кА) распространяется по передающей линии, взрывая проволочки диаметром 10÷50 мкм за время 10÷20 не. Таким образом, формируются ударные волны, достаточные для инициирования многоочаговой детонации заряда БВВ. Диаметры отдельных проволочек могут быть выбраны так, чтобы компенсировать запаздывание взрывов отдельных проводников, связанное с пробегом электромагнитной волны по двухпроводной передающей линии и затуханием волны при пробеге от места установки первой проволочки до последней. Для примера, масса медной проволочки диаметром 50 мкм и длиной 1 см приблизительно равна 175 мкг. При энергии сублимации порядка 103Дж/г для взрыва одной такой проволочки потребуется вложить в нее около 0,2 Дж, при энергии в электрическом импульсе несколько десятков джоулей.

Осуществление взрыва проводников электрическим импульсом малогабаритного сильноточного высоковольтного наносекундного генератора с использованием двухпроводной передающей линии имеет следующие достоинства:

1) согласование импеданса передающей линии с выходным импедансом генератора обеспечивает максимальную эффективность передачи энергии из генератора в передающую линию.

2) позволяет устанавливать несколько, расположенных последовательно, взрывающихся проводников, в точках будущих очагов синхронной детонации.

3) при подаче на вход передающей линии электрического импульса напряжением 200÷400 кВ с током порядка 10 кА проволочки диаметром 10÷50 мкм синхронно взрываются (плазма разрядных каналов нагревается до температур более 8000°С за время 10÷20 не) и порождают ударные волны и детонацию заряда БВВ. Такая синхронность дает возможность задействовать параллельно несколько таких систем инициирования (каждая в свою очередь с несколькими ЭВП).

4) при использовании двухпроводной передающей линии с открытым концом, обеспечивает практически стопроцентную защиту от мощных электромагнитных импульсов (ЭМИ), так как нет замкнутого электрического контура, в который были бы включены взрывающиеся проводники.

Похожие патенты RU2716179C1

название год авторы номер документа
ЭЛЕКТРОВЗРЫВНОЕ УСТРОЙСТВО 2011
  • Абрамов Николай Анатольевич
  • Бугров Владимир Геннадьевич
  • Гаин Илья Павлович
  • Голишников Николай Николаевич
  • Епифановский Максим Валерьевич
  • Лобанов Валентин Николаевич
  • Рудько Михаил Леонидович
  • Чевтаев Сергей Александрович
RU2472103C1
СПОСОБ ЭЛЕКТРИЧЕСКОГО ВЗРЫВАНИЯ ПРОТЯЖЕННЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2003
  • Голубев В.А.
RU2244250C1
ВЗРЫВОМАГНИТНАЯ СИСТЕМА ДЛЯ ГЕНЕРИРОВАНИЯ МОЩНОГО ИМПУЛЬСА ЭНЕРГИИ 2013
  • Борискин Александр Сергеевич
  • Демидов Василий Александрович
  • Казаков Сергей Аркадьевич
RU2548021C2
ЭЛЕКТРОДЕТОНАТОР 1998
  • Белявский Анатолий Геннадьевич
  • Кириллов Юрий Александрович
RU2150671C1
УЧЕБНАЯ ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВЗРЫВНЫХ ПРОЦЕССОВ 2008
  • Одинцов Владимир Алексеевич
RU2373489C1
ЗАРЯД ВЗРЫВЧАТОГО ВЕЩЕСТВА И СПОСОБ ВЕДЕНИЯ ВЗРЫВНЫХ РАБОТ 1999
  • Шмелев В.М.
  • Денисаев А.В.
  • Че Джае-О
RU2174110C2
Ускоритель заряженных частиц 1976
  • Павловский А.И.
  • Васюков В.А.
SU584707A1
ЗАРЯД ВЗРЫВЧАТОГО ВЕЩЕСТВА И СПОСОБ ВЕДЕНИЯ ВЗРЫВНЫХ РАБОТ 2004
  • Шмелев В.М.
  • Денисаев А.А.
RU2262069C1
ЗАМЕДЛИТЕЛЬ ДЕТОНАЦИОННЫХ КОМАНД БАЛЛИСТИЧЕСКОГО ТИПА 2014
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Кондакова Любовь Викторовна
RU2579321C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДЕТОНАТОРА 2019
  • Воробьев Вячеслав Иванович
  • Епифановский Максим Валерьевич
  • Чевтаев Сергей Александрович
  • Додонов Алексей Александрович
  • Прохорова Татьяна Эристовна
RU2723364C1

Иллюстрации к изобретению RU 2 716 179 C1

Реферат патента 2020 года Способ многоочагового электровзрывного инициирования детонации в бризантном взрывчатом веществе

Изобретение относится к физике взрыва и физике высоких давлений. Способ многоочагового электровзрывного инициирования детонации в бризантном взрывчатом веществе включает применение сильноточного высоковольтного генератора, двухпроводной передающей линии, электрически взрывающихся проводников и бризантного взрывчатого вещества. Наносекундный электрический импульс от сильноточного высоковольтного генератора подают по согласованной с импедансом генератора двухпроводной передающей линии на ряд электрически взрывающихся проводников, установленных последовательно в разрывах одного или обоих электродов этой передающей линии в точках будущих очагов синхронной детонации. Пространство вокруг взрывающихся проводников заполнено бризантным взрывчатым веществом. При наносекундном электрическом взрыве проводника в примыкающем пространстве формируется ударная волна, за фронтом которой происходит объемный взрыв, приводящий непосредственно к формированию детонационной волны в бризантном взрывчатом веществе. Целью изобретения является синхронное инициирование нескольких очагов детонации и уменьшение времени от начала подачи электрического импульса до формирования ударной волны и детонации бризантного взрывчатого вещества. 3 ил.

Формула изобретения RU 2 716 179 C1

Способ многоочагового электровзрывного инициирования детонации в бризантном взрывчатом веществе, с применением сильноточного высоковольтного генератора, двухпроводной передающей линии, электрически взрывающихся проводников и бризантного взрывчатого вещества, заключающийся в том, что наносекундный электрический импульс от сильноточного высоковольтного генератора подают по согласованной с импедансом генератора двухпроводной передающей линии на ряд электрически взрывающихся проводников, установленных последовательно в разрывах одного или обоих электродов этой двухпроводной передающей линии в точках будущих очагов синхронной детонации, предварительно пространство вокруг взрывающихся проводников заполняют бризантным взрывчатым веществом.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716179C1

ПОЛАРД Ф.Б
и др., Вспомогательные системы ракетно-космической техники, Изд
Мир
М
Кинематографический аппарат 1923
  • О. Лише
SU1970A1
Приспособление для подвешивания тележки при подъемках сошедших с рельс вагонов 1920
  • Немчинов А.А.
SU216A1
ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО 1998
  • Неклюдов А.Г.
  • Андреев В.В.
  • Нифонтов В.И.
  • Прокопьев Ю.М.
  • Кочеев А.А.
  • Гусельников В.И.
RU2147365C1
СИСТЕМА ИНИЦИИРОВАНИЯ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2005
  • Кантор Вениамин Хаимович
  • Петров Валерий Леонидович
  • Потапов Анатолий Георгиевич
  • Фалько Василий Васильевич
  • Текунова Римма Алексеевна
  • Черниловский Александр Матвеевич
  • Додух Владимир Гаврилович
  • Липченко Владимир Николаевич
RU2285897C1
US 5173570 A, 22.12.1992
СОКОВНИН С.Ю
Мощная импульсная техника, учебное издание
ГОУ ВПОУГГУ-УПИ, 2008
Насос 1917
  • Кирпичников В.Д.
  • Классон Р.Э.
SU13A1

RU 2 716 179 C1

Даты

2020-03-06Публикация

2019-04-30Подача