Интегральный микромеханический гироскоп-акселерометр Российский патент 2020 года по МПК G01P15/08 

Описание патента на изобретение RU2716869C1

Предлагаемое изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и линейного ускорения.

Известен интегральный микромеханический акселерометр [A. Selvakumar, F. Ayazi, K. Najafi, A High Sensitivity Z-Axis Torsional Silicon Accelerometer, Digest, IEEE International Electron Device Meeting (IEDM’96), San Francisco, CA, December 1996, p. 765, fig. 1a], содержащий диэлектрическую подложку и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины с гребенчатой структурой с одной стороны из полупроводникового материала и связанную с подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на диэлектрической подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный на диэлектрической подложке с зазором относительно инерционной массы так, что образует конденсатор в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов.

Данный акселерометр позволяет измерять величину линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости подложки акселерометра.

Признаками аналога, совпадающими с существенными признаками, являются инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный непосредственно на подложке.

Недостатком конструкции акселерометра является невозможность измерения величин линейного ускорения вдоль двух взаимно перпендикулярных осей X и Y, расположенных в плоскости подложки и величин угловой скорости.

Функциональным аналогом заявляемого объекта является интегральный микромеханический акселерометр [M.A. Lemkin, B.E. Boser, D. Auslander, J.H. Smith, A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass, International Conference on Solid-State Sensors and Actuators (Transducers’97), Chicago, June 16-19, 1997, p. 1186, fig. 1], содержащий полупроводниковую подложку с расположенным на ней неподвижным электродом, выполненным из полупроводникового материала, и инерционную массу, расположенную с зазором относительно подложки, выполненную в виде пластины из полупроводникового материала, образующую с неподвижным электродом плоский конденсатор за счет их полного перекрытия, используемый в качестве емкостного преобразователя перемещений, и связанную с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на подложке, и неподвижные электроды, выполненные из полупроводникового материала с гребенчатыми структурами и расположенные непосредственно на подложке с зазором относительно инерционной массы так, что образуют конденсаторы в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, используемые в качестве емкостных преобразователей перемещений.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками аналога, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Из известных наиболее близким по технической сущности к заявляемому объекту является интегральный микромеханический акселерометр [Б.Г. Коноплев, И.Е. Лысенко, Интегральный микромеханический акселерометр-клинометр, патент РФ на изобретение №2279092, опубликовано 27.06.2006, Бюл. №18], содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, и четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками прототипа, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, подвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Задачей предполагаемого изобретения является возможность измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат, достигаемый при осуществлении предполагаемого изобретения, заключается в возможности измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат достигается за счет введения четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электродов электростатических приводов, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, два неподвижных электрода емкостных преобразователей перемещений, четырех «Ш»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, соединенных с инерционной массой, выполненной с перфорацией, двух торсионов, соединенных с дополнительной инерционной массой, выполненной с перфорацией.

Для достижения необходимого технического результата в интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четыре неподвижных электрода емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложке, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, два неподвижных электрода емкостных преобразователей перемещений, четырех «Ш»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, соединенных с инерционной массой, выполненной с перфорацией, четырех торсионов, соединенных с дополнительной инерционной массой, выполненной с перфорацией.

Сравнивая предлагаемое устройство с прототипом, видим, что оно содержит новые признаки, то есть соответствует критерию новизны. Проводя сравнение с аналогами, приходим к выводу, что предлагаемое устройство соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.

На Фиг. 1 приведена топология предлагаемого интегрального микромеханического гироскопа-акселерометра и показаны сечения. На Фиг. 2 приведена структура предлагаемого интегрального микромеханического гироскопа-акселерометра.

Интегральный микромеханический гироскоп-акселерометр (Фиг. 1) содержит полупроводниковую подложку 1 с расположенными на ней восьмью неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, неподвижные электроды емкостных преобразователей перемещений 10, 55 выполненных из полупроводникового материала и расположенных непосредственно на подложке, четыре подвижных электрода емкостных преобразователей перемещений 11, 12, 13, 14, выполненные в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки 1, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанные с полупроводниковой подложкой 1 с помощью упругих балок 15, 16, 17, 18, 19, 20, 21, 22, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с опорами 23, 24, 25, 26, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, и с помощью «П»-образных систем упругих балок 27, 28, 29, 30, 31, 32, 33, 34, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с дополнительными опорами 35, 36, 37, 38, 39, 40, 41, 42, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, четыре неподвижных электрода электростатических приводов 43, 44, 45, 46, выполненные из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложки 1, образующие конденсаторы с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, инерционную массу 47, выполненную в виде рамки с перфорацией из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки 1 и соединенную с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 с помощью систем упругих балок 48, 49, 50, 51, выполненных из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки 1, инерционную массу 52, выполненную в виде пластины с перфорацией из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки 1, образующую с расположенным на полупроводниковой подложке 1 неподвижными электродами емкостных преобразователей перемещений 10 и 55 плоские конденсаторы за счет их полного перекрытия, и связанную с инерционной массой 47 с помощью торсионов 53, 54, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1.

Работает устройство следующим образом.

При возникновении линейного ускорения вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси X в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 17, 18, 21, 22, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 23, 24, 25, 26, соответственно, «Ш»-образных систем упругих балок 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 35, 36, 39, 40. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси Y в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 15, 16, 19, 20, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 23, 24, 25, 26, соответственно, «Ш»-образных систем упругих балок 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 37, 38, 41, 42. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости полупроводниковой подложки 1, под действием сил инерции дополнительная инерционная масса 52 начинает совершать угловые колебания перпендикулярно плоскости полупроводниковой подложки 1, за счет кручения торсионов 53, 54, изгиба «Ш»-образных систем упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижными электродами емкостных преобразователей перемещений 10 и 55 и дополнительной инерционной массой 52, соответственно, за счет изменения величины зазора между ними, характеризуют величину линейного ускорения.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 43, 45 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 14, 12 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, «Ш»-образных систем упругих балок 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 11, 13 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, «Ш»-образных систем упругих балок 48, 50 и «П»-образных систем упругих балок 29, 30, 33, 34. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба «Ш»-образных систем упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 44, 46 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 11, 13 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, «Ш»-образных систем упругих балок 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 12, 14 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, «Ш»-образных систем упругих балок 49, 51 и «П»-образных систем упругих балок 27, 28, 31, 32. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба «Ш»-образных систем упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижными электродами емкостных преобразователей перемещений 10, 55 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

Опоры 23, 24, 25, 26 выполняют роль ограничителя движения инерционной массы 47 в плоскости полупроводниковой подложки 1.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп-акселерометр, позволяющий измерять величины угловой скорости и ускорения вдоль осей X, Y, расположенных в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Введение четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, два неподвижных электрода емкостных преобразователей перемещений, четырех «Ш»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, соединенных с инерционной массой, выполненной с перфорацией, четырех торсионов, соединенных с дополнительной инерционной массой, выполненной с перфорацией, позволяет измерять величины угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки, что позволяет использовать предлагаемое изобретение в качестве интегрального измерительного элемента величин угловой скорости и линейного ускорения.

Таким образом, по сравнению с аналогичными устройствами, предлагаемый интегральный микромеханический гироскоп-акселерометр позволяет сократить площадь подложки, используемую под размещение измерительных элементов величин угловой скорости и линейного ускорения, так как для измерения величин угловой скорости и линейного ускорения по осям X, Y, Z используется только один интегральный микромеханический сенсор.

Похожие патенты RU2716869C1

название год авторы номер документа
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2015
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Ежова Ольга Александровна
RU2597950C1
Интегральный микромеханический гироскоп-акселерометр 2018
  • Лысенко Игорь Евгеньевич
  • Коноплев Борис Георгиевич
  • Кидяев Николай Филиппович
  • Шафростова Светлана Игоревна
RU2683810C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2016
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Ежова Ольга Александровна
RU2649249C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2015
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Бондарев Филипп Михайлович
RU2597953C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК 2007
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Полищук Елена Викторовна
RU2334237C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2007
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Шерова Елена Викторовна
RU2351896C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР-КЛИНОМЕТР 2005
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
RU2279092C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2011
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
RU2477863C1
Интегральный микромеханический гироскоп 2021
  • Лысенко Игорь Евгеньевич
  • Науменко Данил Валерьевич
  • Синютин Сергей Алексеевич
  • Ежова Ольга Александровна
RU2778622C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2007
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Шерова Елена Викторовна
RU2351897C1

Иллюстрации к изобретению RU 2 716 869 C1

Реферат патента 2020 года Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной технике. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит четыре неподвижных электрода емкостных преобразователей перемещений, четыре неподвижных электрода электростатических приводов, восемь дополнительных опор, восемь дополнительных П-образных систем упругих балок, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде Т-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, соединенных с инерционной массой с помощью Ш-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода емкостных преобразователей перемещений попарно объединены в два, а инерционная масса выполнена с перфорацией и состоит из двух частей: внутренней и внешней, соединенных двумя торсионами. Технический результат – возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.

Формула изобретения RU 2 716 869 C1

Интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, связанные с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, отличающийся тем, что в него введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, восемь дополнительных П-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде Т-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, соединенных с инерционной массой с помощью Ш-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода емкостных преобразователей перемещений попарно объединены в два, а инерционная масса выполнена с перфорацией и состоит из двух частей: внутренней и внешней, соединенных двумя торсионами.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716869C1

ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР-КЛИНОМЕТР 2005
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
RU2279092C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2016
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Ежова Ольга Александровна
RU2649249C1
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР 2015
  • Коноплев Борис Георгиевич
  • Лысенко Игорь Евгеньевич
  • Бондарев Филипп Михайлович
RU2597953C1
0
SU181082A1
US 5313835 A1, 24.05.1994.

RU 2 716 869 C1

Авторы

Ежова Ольга Александровна

Лысенко Игорь Евгеньевич

Севостьянов Дмитрий Юрьевич

Коноплев Борис Георгиевич

Даты

2020-03-17Публикация

2019-08-01Подача