ВРАЩАЮЩЕЕСЯ ВОЛНОВОДНОЕ СОЕДИНЕНИЕ Российский патент 2020 года по МПК H01P1/06 

Описание патента на изобретение RU2719628C1

Изобретение относится к технике сверхвысоких частот и предназначено для использования в радиотехнических устройствах для передачи электромагнитной энергии от неподвижного приемопередатчика, например радиолокационного, к вращающейся антенне.

Известны вращающиеся соединения, состоящие из соосно установленных неподвижного и подвижного отрезков волновода, электрически соединенных между собой с использованием скользящих контактов (например, Дж., К. Саусворт «Принципы и применение волноводной передачи». М.: Сов. Радио, 1955, стр. 385-386) или дроссельного соединения (А.Ф. Харвей Техника сверхвысоких частот. Пер. с англ. под ред. В.И. Сушкевича. Том.1. М.: Сов. Радио. 1965. стр. 108-109).

Известны вращающиеся соединения, выполненные из коаксиальных волноводов с волнами типа Т и круглых волноводов с волной E01 или Н11 (А.Ф. Харвей «Техника сверхвысоких частот». Пер. с англ. под ред. В.И. Сушкевича. Том.1. М. Сов. Радио, 1965, стр. 180-184). Известны также многоканальные вращающиеся соединения, например, Патент РФ №2271056, предназначенные для передачи электромагнитной энергии по двум или более независимым волноводным каналам. В целях расширения полосы частот и повышения допустимой мощности предложено решение в виде изогнутых волноводов с уменьшенным поперечным сечением (Патент РФ №2243618).

В дециметровом частотном диапазоне вращающиеся соединения чаще всего выполняют на основе устройств на коаксиальном волноводе или в комбинации с прямоугольным волноводом. В сантиметровом диапазоне вращающиеся соединения выполняют на основе круглых волноводов (А.Ф. Харвей «Техника сверхвысоких частот». Пер. с англ. под ред. В.И. Сушкевича. Том. 1. М.: Сов. Радио, 1965, стр. 181-184). Промышленностью производятся вращающиеся соединения различных диапазонов - от дециметрового до сантиметрового (ЭЛЕКТРОНИКА: Наука, Технология, Бизнес, 1/2010, стр. 46-47).

Общий недостаток известных технических решений связан с необходимостью обеспечения электрического контакта между неподвижной и движущейся частями волноводов в составе вращающегося соединения. Дроссельные контакты не обеспечивают работу в широкой полосе частот, скользящие контактные соединения не обеспечивают постоянства сопротивления контакта при вращении и сложны в изготовлении (А.Ф. Харвей «Техника сверхвысоких частот». Пер. с англ. под ред. В.И. Сушкевича. Том.1. М.: Сов. Радио, 1965, стр. 106-110).

Известны технические решения по выполнению вращающихся соединений с улучшенными параметрами контактных соединений, например Патент ФРГ №1125496, Патент РФ №1075335, АС СССР №544023, Патент США №3229234.

Недостатком известных решений является сложность конструкции и требование соблюдения жестких технологических допусков на их геометрические размеры.

Наиболее близким по технической сущности является вращающееся коаксиальное соединение (Д.М. Сазонов, А.Н. Гридин, Б.Н. Мишустин «Устройства СВЧ». М: Высшая школа, 1981, стр. 224-226). Устройство состоит из входного и выходного коаксиальных волноводов, установленных соосно с возможностью вращения, внешние и внутренние проводники которых электрически соединены при помощи дроссельных соединений.

Недостатком прототипа является сложность изготовления вследствие требования выполнения дроссельных соединений на внешнем и внутреннем проводниках с высокой точностью. Известно, что наличие малых поперечных смещений волноводов с дроссельным соединением приводит к появлению резонансов, ухудшающих согласование и снижающих коэффициент передачи участка волновода с дроссельным соединением (А.Ф. Харвей «Техника сверхвысоких частот». Пер. с англ. под ред. В.И. Сушкевича Том.1. М.: Сов. Радио, 1965, стр. 109). Соблюдение жестких производственных допусков на изготовление становится трудно выполнимым при реализации вращающихся соединений миллиметрового диапазона волн.

Для заявленного вращающегося волноводного соединения выявлены основные общие существенные признаки, такие как: вращающееся волноводное соединение, содержащее два отрезка коаксиальных линий, установленных соосно с возможностью вращения один относительно другого вокруг их оси.

Технической проблемой, решаемой заявленным изобретением, является создание вращающегося волноводного соединения, обладающего упрощенной конструкцией и сниженными требованиями к точности изготовления вращающихся соединений миллиметрового диапазона волн.

Суть изобретения поясняется чертежами:

- на Фиг. 1 представлена схема устройства с коаксиальными входами;

- на Фиг. 2 представлена схема устройства с волноводными входами;

- на Фиг. 3 показана расчетная частотная зависимость коэффициентов отражения и прохождения.

Состав устройства с коаксиальными и волноводными входами следующий:

1, 2 - внутренний проводник;

3, 4 - внешний проводник;

5, 6 - конический участок;

7 - подшипник;

8 - диэлектрический стержень;

9 - выходной коаксиальный соединитель;

10 - входной коаксиальный соединитель;

11 - входной волноводно-коаксиальных переход;

12 - выходной волноводно-коаксиальных переход.

Вращающееся волноводное соединение содержит два отрезка коаксиальных линий, образованных внутренними 1, 2 и внешними 3, 4 проводниками, установленных соосно с возможностью вращения один относительно другого вокруг их оси. В него также входят металлические конические участки 5, 6, соединенные каждый узкой стороной с внешними проводниками входной 3 и выходной 4 коаксиальных линий, и диэлектрический стержень 8 диаметром не менее

где λ - длина волны,

ε - относительная диэлектрическая проницаемость материала стержня.

В свою очередь диэлектрический стержень 8 состоит из двух или более частей, установленных вплотную друг другу с возможностью вращения. Наличие зазора между частями диэлектрического стержня 8 не приводит к заметным отражениям и потерям энергии распространяющейся волны, если величина зазора значительно меньше длины волны. Как показали расчеты, проведенные авторами, максимально допустимый зазор составляет величину 0.03…0.06 длины волны. Поэтому при выполнении частей диэлектрического волновода с посадкой типа скользящей влияние зазора будет практически неощутимым.

Радиус внешнего кожуха устройства (два полых цилиндра на торцах конических участков 5, 6, соединенных между собой с возможностью вращения относительно оси коаксиальных линий) превышает диаметр диэлектрического стержня 8 не менее чем в два раза.

Работа устройства осуществляется следующим образом. Электромагнитная волна поступает через входной коаксиальный соединитель 10 во входную коаксиальную линию, образованную внутренним 1 и внешним 3 проводниками. В коническом участке 5 происходит преобразование Т-волны коаксиальной линии в волну типа EH01 диэлектрического волновода, образованного диэлектрическим стержнем 8 и распространяющуюся в направлении выхода устройства. Известно условие существования распространяющейся волны mn-го типа (например, Н.П. Красюк, Н.Д. Дымович «Электродинамика и распространение радиоволн». М.: «Высшая школа» 1974, стр. 253).

где λ - длина волны;

λmn крит - критическая длина волны mn-то типа.

Для волны EH01 (В.А. Неганов, Г.П. Яровой «Теория и применение устройств СВЧ» М.: Радио и связь, 2006, стр. 112-113)

где dстерж - диаметр стержня;

ε - относительная диэлектрическая проницаемость материала стержня.

Таким образом, диаметр диэлектрического стержня 8 должен иметь величину, достаточную для распространения в нем волны EH01:.

Распространение электромагнитной волны в диэлектрическом волноводе имеет ту особенность, что оно происходит как в толще диэлектрического стержня 8, так и в окружающем его пространстве. Внешнее поле быстро убывает в поперечном направлении по мере удаления от диэлектрического стержня 8. Размер области, где практически сконцентрировано поле распространяющейся волны, ограничен так называемым радиусом поля (Д.М. Сазонов, А.Н. Гридин, Б.Н. Мишустин «Устройства СВЧ». М.: Высшая школа, 1981, стр. 210). Величина радиуса поля в типичных диэлектрических волноводах составляет величину около удвоенного значения диаметра диэлектрического стержня 8. Это означает, что любые объекты, находящиеся за пределами радиуса поля, практически не влияют на распространение электромагнитной волны. Поэтому внешний кожух не участвует в процессе передачи электромагнитной энергии от входа к выходу заявляемого устройства и не влияет на распространение электромагнитной волны в диэлектрическом волноводе, если его радиус превышает диаметр диэлектрического стержня 8 в два или более раз (Д.М. Сазонов, А.Н. Гридин, Б.Н. Мишустин «Устройства СВЧ». М.: Высшая школа, 1981, стр. 210-212). Поэтому в месте соединения двух половин внешнего кожуха не требуется обеспечение качественного электрического контакта. Внешний кожух выполняет конструктивные функции механического соединения частей устройства и обеспечения вращения вокруг его осевой линии с использованием подшипника 7. В коническом участке 6 устройства происходит обратное преобразование волны диэлектрического волновода в Т-волну выходной коаксиальной линии, образованной внешним 4 и внутренним 2 проводниками. Включение устройства в выходной тракт осуществляется при помощи выходного коаксиального соединителя 9.

Вариант устройства, предназначенного для включения в волноводный тракт из прямоугольных металлических волноводов, показан на Фиг. 2. Вариант устройства отличается только наличием входного 11 и выходного 12 волноводно-коаксиальных переходов. Переходы с прямоугольного волновода на коаксиальный известны (например (Д.М. Сазонов, А.Н. Гридин, Б.Н. Мишустин «Устройства СВЧ». М.: Высшая школа, 1981, стр. 227).

Проведенные расчеты путем электродинамического моделирования в среде CST Microwave Studio подтверждают работоспособность предлагаемого вращающегося соединения. Суммарные потери в расчетной полосе частот 50.5-52.5 ГГц не превышают 0.25 дБ (5.5%). Иллюстрирующие данные приведены на Фиг. 3.

Решение технической проблемы - упрощения конструкции и снижения требований к точности изготовления вращающихся соединений миллиметрового диапазона волн -состоит в том, что в заявляемом устройстве за счет применения металлических конических участков в конструкции не требуется соединения входной и выходной частей с обеспечением электрического контакта между ними. Таким образом, его конструкция не содержит скользящих или дроссельных контактов, конструктивно и технологически трудно выполнимых в миниатюрных устройствах миллиметрового диапазона волн.

Заявляемое устройство конструктивно и технологически выполнимо традиционными способами изготовления волноводных устройств СВЧ диапазона (И.П. Бушминский «Изготовление элементов конструкций СВЧ. Волноводы и волноводные устройства». М.: Высшая школа, 1974). Детали, составляющие заявляемое устройство, могут быть выполнены: металлические части из латуни или другого хорошо проводящего металла, диэлектрический стержень - из высокочастотного диэлектрика, например фторопласта или плавленого кварца.

Устройство может применяться для построения антенно-фидерных систем миллиметрового диапазона волн.

Техническим результатом является применение металлических конических участков и диэлектрического стержня в конструкции волноводного соединения.

Похожие патенты RU2719628C1

название год авторы номер документа
СОЕДИНЕНИЕ ПОВОРОТНОЕ ВОЛНОВОДНОЕ 2022
  • Доманов Сергей Константинович
  • Бондаренко Сергей Михайлович
RU2782311C1
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ МАТЕРИАЛА РЕФЛЕКТОРА 2020
  • Данилов Игорь Юрьевич
  • Романов Анатолий Геннадьевич
  • Насыбуллин Айдар Ревкатович
  • Седельников Юрий Евгеньевич
RU2757357C1
Антенна миллиметровых волн 2018
  • Седельников Юрий Евгеньевич
  • Шаабан Мохамед Гурэльдин Мохамед
  • Мышкина Анастасия Юрьевна
RU2694156C1
МИКРОВОЛНОВЫЙ НАГРЕВАТЕЛЬ ЖИДКОЙ ИЛИ СЫПУЧЕЙ СРЕДЫ 2004
  • Воробьев Н.Г.
  • Аюпов Т.А.
  • Гараев Т.И.
  • Маркунин Е.Н.
RU2264052C1
Печатная антенна миллиметровых волн 2018
  • Седельников Юрий Евгеньевич
  • Скачков Владимир Алексеевич
  • Олейник Евгений Юрьевич
RU2694124C1
ВОЛНОВОДНЫЙ ПОЛЯРИЗАТОР 2006
  • Шалякин Александр Иванович
  • Шалякин Дмитрий Александрович
RU2324264C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛНОВОДНОГО ПОЛЯРИЗАТОРА 2009
  • Белов Сергей Николаевич
RU2402120C1
ВОЛНОВОДНЫЙ ПОЛЯРИЗАТОР 2004
  • Шалякин А.И.
RU2265922C1
ВОЛНОВОДНЫЙ ПОЛЯРИЗАТОР 2007
  • Шалякин Александр Иванович
  • Шалякин Дмитрий Александрович
RU2332756C1
Коаксиально-волноводный переход 1977
  • Ив Коммо
  • Ив Канан
SU728738A3

Иллюстрации к изобретению RU 2 719 628 C1

Реферат патента 2020 года ВРАЩАЮЩЕЕСЯ ВОЛНОВОДНОЕ СОЕДИНЕНИЕ

Изобретение относится к радиотехнике, в частности к вращающимся волноводным соединениям. Вращающееся волноводное соединение содержит два отрезка коаксиальных линий, установленных соосно с возможностью вращения один относительно другого вокруг их оси. А также содержит металлические конические участки, соединенные каждый узкой стороной с внешними проводниками входной и выходной коаксиальных линий, и диэлектрический стержень диаметром не менее ,

где λ - длина волны, ε - относительная диэлектрическая проницаемость материала стержня. Стержень состоит из двух или более соосных частей, установленных вплотную друг к другу с возможностью вращения. Устройство содержит внешний кожух в виде двух полых цилиндров, установленных каждый на торцах конических участков и соединенных между собой с возможностью вращения относительно оси коаксиальных линий. Радиус кожуха превышает диаметр диэлектрического стержня не менее чем в два раза. Технический результат - упрощение конструкции с одновременным снижением требований к точности. 3 ил.

Формула изобретения RU 2 719 628 C1

Вращающееся волноводное соединение, содержащее два отрезка коаксиальных линий, установленных соосно с возможностью вращения один относительно другого вокруг их оси, отличающееся тем, что содержит металлические конические участки, соединенные каждый узкой стороной с внешними проводниками входной и выходной коаксиальных линий, и диэлектрический стержень диаметром не менее

,

где λ - длина волны,

ε - относительная диэлектрическая проницаемость материала стержня,

состоящий из двух или более соосных частей, установленных вплотную друг к другу с возможностью вращения и концами, располагаемыми внутри металлических конических участков, и внешний кожух в виде двух полых цилиндров, установленных каждый на торцах конических участков и соединенных между собой с возможностью вращения относительно оси коаксиальных линий, причем радиус кожуха превышает диаметр диэлектрического стержня не менее чем в два раза.

Документы, цитированные в отчете о поиске Патент 2020 года RU2719628C1

СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУДЫ НАНОВИБРАЦИЙ ПО СПЕКТРУ ЧАСТОТНОМОДУЛИРОВАННОГО ПОЛУПРОВОДНИКОВОГО ЛАЗЕРНОГО АВТОДИНА 2013
  • Усанов Дмитрий Александрович
  • Скрипаль Анатолий Владимирович
  • Астахов Елисей Игоревич
RU2520945C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДИОДОВ СРЕДНЕВОЛНОВОГО ИК ДИАПАЗОНА СПЕКТРА 2012
  • Ильинская Наталья Дмитриевна
  • Матвеев Борис Анатольевич
  • Ременный Максим Анатольевич
  • Усикова Анна Александровна
RU2599905C2
US 4412192 A1, 25.10.1983
Надувной гидроцикл со стационарным транцем для подвесного мотора 2016
  • Киселев Игорь Юрьевич
RU2628278C1
US 20190074568 A1, 07.03.2019
US 3016504 A1, 09.01.1962
US 2901698 A1, 25.08.1959
US 3562679 A1, 09.02.1971
US 4467292 A1, 21.08.1984
US 2853685 A1, 23.09.1958
В.А
Неганов, Г.П
Яровой "Теория и применение устройств СВЧ" - М.: Радио

RU 2 719 628 C1

Авторы

Белов Олег Александрович

Данилов Игорь Юрьевич

Ниткин Анатолий Николаевич

Романов Анатолий Геннадьевич

Лаврушев Владимир Никифорович

Петров Алексей Валентинович

Седельников Юрий Евгеньевич

Даты

2020-04-21Публикация

2019-06-10Подача