СПОСОБ ИЗМЕНЕНИЯ ДЛИНЫ ФОКУСИРОВКИ БЕССЕЛЕВА ПУЧКА 0-ГО ПОРЯДКА Российский патент 2020 года по МПК G02B27/16 

Описание патента на изобретение RU2721085C1

Область техники

Изобретение относится к области оптического приборостроения и может быть использовано в лазерных и оптико-электронных приборах, а также в других областях науки и техники, где возникает необходимость плавного изменения длины фокусировки бесселева пучка 0-го порядка.

Уровень техники

Существуют различные способы формирования и изменения пространственных параметров лазерных пучков.

Известен способ изменения диаметра перетяжки выходного лазерного гауссова пучка на фиксированном расстоянии от лазера, реализуемый в устройстве Патент РФ 2488861 С1, содержащем лазер и два перемещающихся оптических компонента. Перемещение компонентов по заданному закону обеспечивает формирование гауссова пучка с требуемым диаметром перетяжки и ее изменение в требуемом диапазоне. Изменение диаметра перетяжки приводит к соответствующему изменению конфокального параметра гауссова пучка, определяющего так называемую длину перетяжки (или фокусировки) гауссова пучка. Недостатком способа является необходимость использования системы перемещения двух компонентов, что усложняет конструкцию схемы и реализацию способа.

Известен способ генерации пучков с различным амплитудно-фазовым распределением поля, реализуемый в устройстве Патент РФ 2458367 С2. Устройство состоит из двух дифракционных оптических элементов, один из которых вращается относительно другого. С помощью данного устройства возможно получение полей с амплитудно-фазовым распределением аналогичным полю после линзы, аксикона, фазовращателя или спиральной фазовой пластинки с изменением их параметров в реальном времени (фокусное расстояние, преломляющая способность, спиральный индекс, сдвиг фазы). Недостатком способа является то, что фазовращение не является непрерывным, т.е. используемые оптические элементы имеют «позицию остановки», откуда их нужно возвращать в их соответствующие «начальные позиции» прежде, чем выполнить фазовращение.

В патенте US 9658436 предложен вариообъектив для видеокамеры. Вариообъектив включает группу подвижных линз и группу стационарных линз с переменной оптической силой на основе жидких линз. Система предназначена для формирования изображения с разным масштабом в широком диапазоне фокусных расстояний.

Раскрытие изобретения

Задачей заявляемого изобретения является разработка способа, обеспечивающего плавное изменение длины фокусировки бесселева пучка 0-го порядка с помощью лазерной вариосистемы.

Сущность изобретения поясняет фиг. 1, на которой представлена оптическая схема лазерной вариосистемы из двух линз и аксикона, формирующая бесселев пучок 0-го с изменяемой длиной фокусировки и постоянным диаметром ядра. При этом первая линза оптической системы - линза с изменяемым фокусным расстоянием и осевым перемещением; вторая линза - неподвижная с постоянным фокусным расстоянием.

Способ реализуется оптической системой, включающей последовательно установленные: лазер, излучающий на длине волны λ гауссов пучок с диаметром перетяжки Dп, конфокальным параметром zк и параметром качества М2; лазерную вариосистему, в которой первую линзу перемещают вдоль оптической оси (расстояние d1 от перетяжки входного гауссова пучка до первой линзы d1=var) и осуществляют соответствующее изменение ее фокусного расстояния по одному из законов а вторая линза имеет постоянное фокусное расстояние и устанавливается на расстоянии от входной перетяжки, и аксикон с показателем преломления материала n и углом при основании u0. Здесь - расстояние от входной перетяжки до перетяжки пучка, преобразованного первой линзой. Это постоянное расстояние обеспечивается за счет согласованного перемещения первой линзы и изменении ее фокусного расстояния по закону . Расстояние L определяется требуемыми параметрами формируемого бесселева пучка и конструктивными ограничениями схемы.

Длина фокусировки формируемого бесселева пучка 0-го порядка изменяется по закону . Здесь - диаметр перетяжки квазипараллельного гауссова пучка после второй линзы оптической системы (на входе аксикона) в зависимости от расстояния d1 от перетяжки входного гауссова пучка до первой линзы.

Краткое описание чертежей

На фиг. 1 представлена оптическая схема лазерной вариосистемы для плавного изменения длины фокусировки бесселева пучка 0-го порядка (Н, Н' - передняя и задняя главные точки линзы; F, F' - передний и задний фокусы линзы; П1 - перетяжка входного пучка; П2 - перетяжка пучка, преобразованного первой линзой; - перетяжка пучка, преобразованного второй линзой);

На фиг. 2 представлена реализация способа плавного изменения длины фокусировки бесселева пучка 0-го порядка путем использования лазерной вариосистемы;

На фиг. 3 представлен закон изменения фокусного расстояния первой линзы лазерной вариосистемы от расстояния между входной перетяжкой и первой линзой;

На фиг. 4 представлен закон изменения длины фокусировки бесселева пучка 0-го порядка от расстояния между входной перетяжкой и первой линзой.

Осуществление изобретения

При преобразовании аксиконом квазипараллельного лазерного гауссова пучка на выходе пучок имеет распределение интенсивности, описываемое функцией Бесселя 1-го рода 0-го порядка, т.е. формируется бесселев пучок 0-го порядка [Пятницкий Л.Н. Волновые бесселевы пучки. М.: Физматлит, 2012. 408 с.]. Диаметр гауссова пучка на входе аксикона и параметры аксикона (показатель преломления материала n и половина угла при основании u0) определяют длину фокусировки zB и диаметр ядра (диаметр центрального максимума) DB распределения интенсивности поля бесселева пучка 0-го порядка:

Из этих формул следует, что при изменении диаметра гауссова пучка на входе аксикона, будет изменяться длина фокусировки формируемого бесселева пучка 0-го порядка; диаметр ядра определяется параметрами аксикона.

Для изменения диаметра гауссова пучка на входе аксикона используем двухлинзовую лазерную вариосистему, которая преобразует пучок лазера с длиной волны излучения λ, диаметром перетяжки Dп, конфокальным параметром zк и параметром качества М2 в квазипараллельный гауссов пучок с изменяемой угловой расходимости, что с учетом инварианта преобразования лазерных гауссовых пучков оптической системой эквивалентно изменению диаметра перетяжки пучка [Пахомов И.И., Рожков О.В., Рождествин В.Н. Оптико-электронные квантовые приборы. М.: Радио и связь, 1982. 456 с.; Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986. 152 с.].

Пространственные параметры лазерного гауссова пучка, преобразованного линзой с фокусным расстоянием ƒ', определяются следующими выражениями [Пахомов И.И., Рожков О.В., Рождествин В.Н. Оптико-электронные квантовые приборы. М.: Радио и связь, 1982. 456 с.; Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986. 152 с.]:

радиус перетяжки

конфокальный параметр

угловая расходимость

расстояние от входной до выходной перетяжки L=d(α+1)-ƒ'(α-1);

продольное увеличение для ближней зоны

Здесь hп, zк и 2θ - радиус перетяжки, конфокальный параметр и угловая расходимость исходного пучка; d - расстояние от перетяжки входного пучка до линзы; параметры преобразованного пучка обозначены штрихом. Для пространственных параметров лазерных гауссовых пучков при его преобразовании оптической системой выполняется инвариант [Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986. 152 с.]:

Конструктивными параметрами лазерной вариосистемы являются d1, d2 и d3.

Задачей изобретения является разработка способа для формирования бесселева пучка 0-го порядка с плавным изменением длины фокусировки при неизменности его диаметра ядра.

Решение поставленной задачи достигается тем, что способ непрерывного изменения длины фокусировки бесселева пучка 0-го порядка при неизменности его диаметра реализуется за счет последовательного расположения источника лазерного излучения, формирующего гауссов пучок, лазерной вариосистемы из двух линз и аксикона. Первая линза оптической системы устанавливается на расстоянии d1 от входной перетяжки и формирует перетяжку гауссова пучка переменного диаметра на фиксированном расстоянии L от перетяжки входного пучка за счет согласованного изменения фокусного расстояния и осевого перемещения первой линзы. Вторая линза с постоянным фокусным расстоянием формирует квазипараллельный гауссов пучок с изменяемой угловой расходимостью и диаметром перетяжки. Для этого вторая линза устанавливается таким образом, что ее передняя фокальная плоскость совмещена с перетяжкой пучка, формируемой первой линзой, и находящаяся на неизменном расстоянии L от перетяжки входного пучка при перемещении первой линзы и изменении ее фокусного расстояния. Поэтому расстояние между первой и второй линзой , а перетяжка пучка после второй линзы находится в ее задней фокальной плоскости. Аксикон относительно второй линзы располагается таким образом, чтобы совпадали его основание и перетяжка преобразуемого гауссова пучка, т.е. расстояние от второй линзы до аксикона равно Таким образом, гауссов пучок на входе аксикона имеет плоский волновой фронт. На выходе аксикона формируется бесселев пучок 0-го порядка с постоянным диаметром ядра и изменяемой длиной фокусировки. В такой схеме оптической системы не требуется дорогостоящая оптика и юстировка узлов для изменения параметров формируемого бесселева пучка. При этом изменение фокусного расстояния компонентов оптической системы и их перемещение не представляет сложности; линзы с изменяемым фокусным расстоянием в настоящее время являются коммерчески доступными, обладают высоким быстродействием, а кроме того, высокой точностью отработки фокусного расстояния [https://www.optotune.com/, https://www.corning.com/ru/ru/innovation/corning-emerging-innovations/corning-varioptic-lenses.html, Blum М., Aschwanden М. (2011). Compact optical design solutions using focus tunable lenses. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 8167 doi: 10.1117/12.897608, Claude Gabay, Bruno Berge, Guillaume Dovillaire, and Samuel Bucourt "Dynamic study of a Varioptic variable focal lens", Proceedings of SPIE - The International Society for Optical Engineering 4767: 159-165, doi: 10.1117/12.468224].

Изобретение включает лазер 1, формирующий на расстоянии d0 входную перетяжку гауссова пучка 2, лазерную вариосистему, состоящую из первой линзы 3 с изменяемым фокусным расстоянием и осевым перемещением, второй линзы 4 с постоянным фокусным расстоянием и аксикона 5, на выходе которой формируется бесселев пучок 0-го порядка с неизменным диаметром ядра и изменяемой длиной фокусировки (см. фиг. 2).

Плавное изменение длины фокусировки бесселева пучка 0-го порядка становится возможным лишь при определенных сочетаниях конструктивных параметров схемы лазерной оптической системы. Поэтому для выбранного лазерного источника с известными параметрами излучения решить указанную задачу позволяет оптическая система с вполне определенными конструктивными параметрами.

Особенность изобретения заключается в учете свойств источника излучения, представляющего лазерный гауссов пучок, использование теории лазерной оптики и аналитических выражений, описывающих преобразование гауссова пучка оптическими системами и формирование аксиконом бесселева пучка 0-го порядка. Эти выражения позволили получить условие плавного изменения длины фокусировки бесселева пучка 0-го порядка и закон изменения конструктивных параметров схемы лазерной вариосистемы.

Конструктивными параметрами начальной схемы лазерной вариосистемы являются: расстояние от входной перетяжки до первой линзы фокусные расстояния первой и второй линз, которые выбираются таким образом, чтобы обеспечить:

1) диаметр перетяжки гауссова пучка на входе аксикона , при котором формируется бесселев пучок 0-го порядка с длиной фокусировки из заданного диапазона его изменения;

2) продольные и поперечные габаритные ограничения лазерной оптической системы с учетом того, что расстояние от входной перетяжки до перетяжки гауссова пучка после первой линзы равно , расстояние между линзами равно , расстояние от второй линзы до аксикона равно .

Указанные параметры являются исходными данными для определения закона изменения параметров первой линзы лазерной вариосистемы. Для этого фокусное расстояние и положение первой линзы необходимо изменять по одному из нелинейных законов :

где d1 - расстояние от перетяжки входного пучка до первой линзы оптической системы в ее текущем положении.

Диаметр перетяжки и угловая расходимость 2θ' квазипараллельного гауссова пучка после второй линзы в зависимости от расстояния d1 от перетяжки входного гауссова пучка до первой линзы определяются выражениями:

Работает способ следующим образом (фиг. 2). Излучение лазера 1 с перетяжкой гауссова пучка 2 последовательно преобразуется линзами 3 и 4 оптической системы и аксиконом 5, на выходе которого формируется бесселев пучок 0-го порядка. За счет изменения фокусного расстояния первой линзы и ее положения по нелинейному закону обеспечивается плавное изменением длины фокусировки бесселева пучка при неизменности его диаметра ядра.

Предпочтительный вариант применения изобретения для формирования бесселева пучка 0-го порядка с постоянным диаметром ядра и измененяемой длиной фокусировки в диапазоне zB=265…1325 мм при использовании лазера с длиной волны излучения λ=0,51 мкм, параметром пучка М2=1,05 и диаметром входной перетяжки Dп=400 мкм и аксикона с показателем преломления материала n=1,5 и углом при основании u0=0,5° имеет следующие параметры:

1. Исходные конструктивные параметры лазерной вариосистемы:

2.1. Расстояние от входной перетяжки до первой линзы

2.2. Фокусное расстояние первой линзы

2.3. Расстояние от входной перетяжки до перетяжки пучка после первой линзы L=400,0 мм.

2.4. Фокусное расстояние второй линзы

2.5. Расстояние между линзами

2.6. Расстояние от второй линзы до аксикона (выходной перетяжки) d3=500,0 мм.

2. Конструктивные параметры лазерной вариосистемы (решение )

На фиг. 3 представлен закон изменения фокусного расстояния первой линзы лазерной вариосистемы от расстояния между входной перетяжкой и первой линзой, а на фиг. 4 - закон zB(d1) изменения длины фокусировки бесселева пучка 0-го порядка от расстояния между входной перетяжкой и первой линзой.

Похожие патенты RU2721085C1

название год авторы номер документа
ЛАЗЕРНЫЙ ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ 2016
  • Дубнищев Юрий Николаевич
  • Шибаев Александр Александрович
RU2638110C1
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты) 2019
  • Носов Павел Анатольевич
  • Ширанков Александр Фёдорович
  • Пискунов Дмитрий Евгеньевич
  • Мачихин Александр Сергеевич
  • Батшев Владислав Игоревич
RU2708549C1
Устройство для формирования бесселевых пучков электромагнитного излучения в однородной прозрачной среде 1990
  • Марголин Леонид Яковлевич
  • Котляр Виктор Викторович
  • Половский Леонид Яковлевич
  • Пятницкий Лев Николаевич
  • Сисакян Иосиф Нораирович
  • Сойфер Виктор Александрович
SU1753446A1
Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на цилиндрическом проводнике 2020
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Герасимов Василий Валерьевич
  • Павельев Владимир Сергеевич
RU2725643C1
Перестраиваемый оптический формирователь масштабируемого плоского однородного лазерного пучка 2019
  • Соколов Виктор Иванович
RU2725685C1
СПОСОБ ИЗМЕНЕНИЯ ДИАМЕТРА ПЕРЕТЯЖКИ ВЫХОДНОГО ЛАЗЕРНОГО ПУЧКА НА ФИКСИРОВАННОМ РАССТОЯНИИ ОТ ЛАЗЕРА 2012
  • Пахомов Иван Иванович
  • Григорьянц Александр Григорьевич
  • Носов Павел Анатольевич
  • Ширанков Александр Фёдорович
  • Хорохоров Алексей Михайлович
  • Павлов Виктор Юрьевич
  • Третьяков Роман Сергеевич
  • Ставертий Антон Яковлевич
  • Голубенко Юрий Владимирович
RU2488861C1
ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ВИДЕ КВАЗИПАРАЛЛЕЛЬНОГО ПУЧКА 2007
  • Жилкин Александр Михайлович
  • Авхадеев Владимир Гашигуллович
  • Поставнин Борис Николаевич
  • Свешникова Инна Сергеевна
  • Драковская Надежда Леонидовна
RU2393516C2
УСТРОЙСТВО СПУТНИКОВОЙ СВЯЗИ 2018
  • Аброськин Иван Петрович
  • Аброськин Кузьма Иванович
  • Гераськов Виктор Васильевич
  • Цым Александр Юрьевич
RU2713459C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОТКЛОНЕНИЯ ОТ ПРЯМОЛИНЕЙНОСТИ 1994
  • Ахмаметьев М.А.
RU2094756C1
СПОСОБ ГЕНЕРАЦИИ ПРОСТРАНСТВЕННЫХ СОСТОЯНИЙ БЕЛЛА 2013
  • Страупе Станислав Сергеевич
  • Кулик Сергей Павлович
RU2554615C2

Иллюстрации к изобретению RU 2 721 085 C1

Реферат патента 2020 года СПОСОБ ИЗМЕНЕНИЯ ДЛИНЫ ФОКУСИРОВКИ БЕССЕЛЕВА ПУЧКА 0-ГО ПОРЯДКА

Изобретение относится к области оптического приборостроения и может быть использовано в лазерных оптико-электронных приборах, где возникает необходимость плавного изменения длины фокусировки бесселева пучка 0-го порядка при сохранении постоянным его диаметра ядра. Техническим результатом решения является обеспечение плавного изменения длины фокусировки бесселева пучка 0-го порядка на основе лазерной вариосистемы. Сущность изобретения заключается в использовании лазера, формирующего гауссов пучок, и лазерной вариосистемы из двух линз и аксикона, в которой по нелинейному закону осуществляют изменение продольного положения и фокусного расстояния первой линзы, вторую неподвижную линзу с постоянным фокусным расстоянием устанавливают на фокусном расстоянии от перетяжки пучка после первой линзы, а аксикон - в задней фокальной плоскости второй линзы. На выходе лазерной вариосистемы формируется бесселев пучок 0-го порядка с постоянным диаметром ядра и изменяемой длиной фокусировки за счет согласованного перемещения и изменения фокусного расстояния первой линзы. Закон изменения параметров лазерной вариосистемы учитывает выражения лазерной оптики, описывающие формирование оптическими элементами и системами гауссова пучка и бесселева пучка 0-го порядка. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 721 085 C1

1. Способ плавного изменения длины фокусировки бесселева пучка 0-го порядка при постоянстве его диаметра ядра, отличающийся тем, что для этого используют лазер и лазерную вариосистему из двух линз и аксикона, где согласованно изменяют расстояние d1 от перетяжки входного пучка до первой линзы и ее фокусное расстояние по нелинейному закону

или

вторую неподвижную линзу с постоянным фокусным расстоянием устанавливают на фокусном расстоянии от перетяжки пучка после первой линзы, а аксикон помещают в задней фокальной плоскости второй линзы, при этом диаметр перетяжки и угловая расходимость 2θ' квазипараллельного гауссова пучка после второй линзы, а также длина фокусировки zB формируемого аксиконом бесселева пучка 0-го порядка изменяются следующим образом:

здесь λ, Dп, М2 и zк - длина волны лазерного излучения, диаметр перетяжки, параметр качества и конфокальный параметр входного гауссова пучка, L - расстояние от входной перетяжки до перетяжки пучка, преобразованного первой линзой, n - показатель преломления аксикона, u0 - угол при основании аксикона.

2. Способ по п. 1, отличающийся тем, что используют комбинированный метод изменения оптических характеристик лазерной вариосистемы за счет продольного перемещения и изменения фокусного расстояния линзы.

Документы, цитированные в отчете о поиске Патент 2020 года RU2721085C1

Устройство для формирования бесселевых пучков электромагнитного излучения в однородной прозрачной среде 1990
  • Марголин Леонид Яковлевич
  • Котляр Виктор Викторович
  • Половский Леонид Яковлевич
  • Пятницкий Лев Николаевич
  • Сисакян Иосиф Нораирович
  • Сойфер Виктор Александрович
SU1753446A1
Оркестровый модулятор 1927
  • Шенфер К.И.
SU9241A1
KR 20160061763 A, 01.06.2016.

RU 2 721 085 C1

Авторы

Носов Павел Анатольевич

Мачихин Александр Сергеевич

Ширанков Александр Фёдорович

Пожар Витольд Эдуардович

Пискунов Дмитрий Евгеньевич

Ковалев Михаил Сергеевич

Батшев Владислав Игоревич

Виноградов Максим Александрович

Даты

2020-05-15Публикация

2019-10-16Подача