КОНТЕЙНЕР ДЛЯ ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ Российский патент 2020 года по МПК G21F5/05 

Описание патента на изобретение RU2722214C1

Изобретение относится к области ядерных технологий, в частности к устройствам для защиты окружающей среды от экологически опасных материалов, и может быть использовано для хранения, транспортировки и захоронения особо токсичных отходов, таких как радиоактивные отходы АЭС, атомных судов морского флота, токсичных материалов химических производств и других вредных производственных отходов.

Известен контейнер для твердых радиоактивных отходов, выполненный в виде защитного корпуса из стали с размещенной в нем емкостью из стали с отходами, пространство между корпусом и емкостью заполнено наполнителем из формальдегидных смол (патент США №4377509, G21F 9/24, 1983).

Недостатком известного контейнера является неудовлетворительная надежность захоронения отходов, связанная с недостаточной коррозионной стойкостью этого контейнера.

Известен контейнер для твердых радиоактивных отходов, выполненный в виде многослойного корпуса, в котором один из промежуточных слоев изготовлен из карбида кремния (заявка Японии №60-022700, G21F 9/36, 1985).

Недостатком этого контейнера являются неудовлетворительные прочностные характеристики из-за хрупкости слоя из карбида кремния, что снижает его эксплуатационную надежность при проведении технологических операций, связанных с загрузкой отходов, перемещении контейнера при его транспортировке и загрузке в транспортный контейнер из бетона или чугуна.

Наиболее близким к заявленному изобретению по технической сущности и достигаемому результату является контейнер для твердых радиоактивных отходов, содержащий пенал, выполненный из реакционно спеченного карбида кремния, содержащего свободный кремний в количестве 3-30% масс, на поверхность которого нанесен слой газофазного карбида кремния (Патент RU №2140402, G21F 5/005, 1998).

Недостатком известного контейнера для хранения, транспортировки и захоронения твердых радиоактивных отходов является низкая ударная прочность пенала из карбида кремния, которая дополнительно снижается, т.к. радиоактивные отходы размещаются в контейнере путем заливки в пенал из карбида кремния остеклованных отходов, имеющих температуру 1200°С. Это приводит к возникновению термических напряжений в пенале, а после остывания остеклованных отходов - остаточных напряжений, что снижает его эксплуатационную надежность при проведении технологических операций: загрузки отходов, перемещении контейнера при его транспортировке и других манипуляций. Кроме того, недостатком контейнера является отсутствие средств защиты окружающей среды от радиационного излучения, исходящего от радиоактивных отходов.

Целью данного изобретения является повышение прочности контейнера для твердых радиоактивных отходов и его надежности, а также защита окружающей среды от радиационного излучения ВАО.

Поставленная цель достигается тем, что наружный слой пенала из реакционно спеченного карбида кремния, содержащего свободный кремний в количестве 3-30% масс, на поверхности которого нанесен слой газофазного карбида кремния, выполнен из пенометалла (пеноалюминия, пенотитана, пеномеди и др.) в частном случае из пеноалюминия с пористостью 60-70%, размером пор 5-6 мм, в поры засыпан порошок В4С дисперсностью 40-50 мкм, являющийся защитой окружающей среды от радиационного излучения, исходящего от ВАО.

Причинно-следственная связь между достижением поставленной цели и отличительными признаками изобретения заключается в следующем.

Для снижения силы удара до значений, обеспечивающих сохранение целостности пенала из карбида кремния при возможном ударе при проведении технологических операций (загрузки отходов, перемещении контейнера при его загрузке в транспортный контейнер и других действий), наружный слой контейнера выполнен из пенометалла с открытой пористостью 50-60%, размером пор 5-6 мм, поры заполнены порошком карбида бора дисперсностью 40-50 мкм, являющимся защитой окружающей среды от радиационного излучения, исходящего от ВАО.

Для снижения остаточных напряжений в пенале из карбида кремния исключается контакт расплавленных остеклованных высокоактивных отходов со стенкой пенала из карбида кремния, для чего остеклованные расплавленные высокоактивные отходы заливаются в стальную канистру, размещенную в пенале из карбида кремния с зазором между стенкой канистры и пенала 5 мм, в который засыпается порошок карбида бора дисперсностью 100-150 мкм.

Параметры наружного слоя (толщина пеноалюминия, защищающего пенал от разрушения, его пористость, размер пор, количество размещаемого в порах порошка) зависят от размера пенала и его веса. Определение этих параметров проводилось математическими методами, все расчеты выполнены в программе ANSIS. В качестве исходных данных были взяты вес контейнера 170 кг, прочность материала пенала 270 МПа, напряжения в пенале при падении с высоты 1,2 м не должны превышать 20-25 МПа. При этих условиях результаты расчета следующие: толщина слоя из пеноалюминия с пористостью 60-70%, величиной пор 5-6 мм составляет 110 мм.

Пример реализации

Предлагаемая конструкция реализуется следующим образом.

Пенал из реакционноспеченного карбида кремния изготавливается по следующей технологии. Из шихты необходимой рецептуры методом гидростатического прессования прессуется заготовка с требуемой геометрией, затем проводятся термические операции - полимеризация при Т=150°С, карбонизация при Т=900°С, силицирование при Т=1500°С, в результате чего получается пенал из карбида кремния с содержанием свободного кремния 3-30% масс. После пескоструйной обработки на внешнюю поверхность пенала наносится слой карбида кремния газофазным методом. На полученной таким образом внешней поверхности пенала размещается слой пенометалла толщиной 110 мм (пеноалюминий, пенотитан, пеномедь и др.), поверх пенометалла размещается обечайка из стали толщиной 1,5 мм. Поры пенометалла заполняются порошком В4С дисперсностью 40-50 мкм (см. фиг. 1).

Результаты испытаний

Контейнер, выполненный в соответствии с прототипом, при падении на стальную плиту с высоты 1,2 м разрушился, т.к. уровень напряжений, возникших от удара, превышает прочность карбида кремния, которая составляет 250 МПа.

Экспериментальное определение устойчивости геометрии и герметичности опытных контейнеров с пеналом из карбида кремния с наружным слоем из пеноалюминия с пористостью 50-60%, размером пор 5-6 мм, с засыпкой из порошка карбида бора дисперсностью 40-50 мкм проводилось на стендах Испытательного центра «ЦНИИМАШ-АНАЛИТИКА-ПРОЧНОСТЬ» при бросковых испытаниях с высоты 1,2 м. Были получены следующие результаты:

- при вертикальном падении контейнера с пеналом из карбида кремния с имитатором бидона с ВАО сохранил целостность и герметичность;

- при вертикальном падении контейнера на боковую поверхность горизонтально пенал из карбида кремния с имитатором бидона с ВАО сохранил целостность и герметичность;

- при вертикальном падении контейнера на боковую поверхность под углом 45° к горизонтали пенал из карбида кремния с имитатором бидона с ВАО сохранил целостность и герметичность.

При проведенных бросках напряжения, возникавшие в пенале, не превышали 10-15 МПа.

Полученные положительные результаты испытаний пенала при падении с высоты 1,2 метра свидетельствуют об удовлетворительном согласии предварительно сделанных расчетных оценок с экспериментом и соответствии прочности и надежности контейнера требуемым свойствам.

Таким образом, предложенный контейнер для хранения, транспортировки и захоронения радиоактивных отходов в сравнении с известным контейнером (Патент RU №2140402, G21F 5/005, 1998) обеспечивает повышение прочности и надежности для хранения и захоронения радиоактивных отходов, а также защиту окружающей среды от радиоактивного излучения.

Порошок карбида бора, размещенный в зазоре между канистрой с ВАО и внутренней поверхностью пенала из карбида кремния, а также размещенный в слое пеноалюминия, обеспечивает снижение интенсивности радиационного излучения до фоновых значений.

Краткое описание чертежа

На фигуре 1 представлен чертеж контейнера для хранения, транспортировки и захоронения особотоксичных отходов, таких как радиоактивные отходы АЭС, атомных судов морского флота, токсичных материалов химических производств и других вредных производственных отходов.

Контейнер включает в себя (фиг. 1):

1 - пенал из реакционноспеченного карбида кремния;

2 - слой из пенометалла с сообщающимися порами и пористостью 60-70%, поры которого заполнены порошком карбида бора;

3 - металлическая обечайка;

4 - стальная канистра, заполненная высокоактивными отходами;

5 - высокоактивные отходы;

6 - зазор между канистрой и внутренней поверхностью пенала;

7 - засыпка из порошка карбида бора;

8 - крышка пенала из реакционноспеченного карбида кремния, приваренная к пеналу методом реакционной сварки.

Похожие патенты RU2722214C1

название год авторы номер документа
КОНТЕЙНЕР ДЛЯ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ 1998
  • Бабаянц Г.И.
RU2146402C1
Способ соединения деталей из карбида кремния 2015
  • Бабаянц Геннадий Иванович
  • Бабаянц Константин Геннадьевич
RU2623395C2
Способ пропитки кремнием полых изделий из пористого материала, содержащего карбид кремния, и устройство для его осуществления 2015
  • Бабаянц Геннадий Иванович
  • Бабаянц Константин Геннадьевич
RU2623391C2
Устройство для формования керамических изделий методом шликерного литья 2015
  • Бабаянц Геннадий Иванович
  • Бабаянц Константин Геннадьевич
RU2623393C2
КАПСУЛА ДЛЯ СБОРА, ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ ПРОСЫПИ ТВЁРДЫХ РАДИАЦИОННО-ОПАСНЫХ И ЯДЕРНО-ОПАСНЫХ МАТЕРИАЛОВ НА ОБЪЕКТАХ АТОМНОЙ ЭНЕРГЕТИКИ 2010
  • Васильев Игорь Юрьевич
  • Зубков Анатолий Андреевич
  • Романовский-Романько Андрей Георгиевич
RU2430436C1
СПОСОБ ДЛИТЕЛЬНОГО ХРАНЕНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2013
  • Тошинский Георгий Ильич
RU2550092C2
СПОСОБ ХРАНЕНИЯ И ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ (ВАРИАНТЫ) 2002
  • Гаврилов С.Д.
  • Смирнов П.Л.
RU2222840C1
СПОСОБ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ 1995
  • Евтерев Л.С.
  • Клименко В.Н.
  • Кобец К.И.
  • Лоборев В.М.
  • Маслин Е.П.
  • Паншин А.А.
  • Тиханов И.Г.
  • Чирков С.И.
RU2077078C1
КОНТЕЙНЕР ДЛЯ ХРАНЕНИЯ И/ИЛИ ЗАХОРОНЕНИЯ ИСТОЧНИКОВ АЛЬФА- И БЕТА-ИЗЛУЧЕНИЯ 2004
  • Минаев Эдуард Александрович
  • Шипилов Анатолий Евгеньевич
  • Хафизов Павел Хакович
  • Мироненко Сергей Николаевич
  • Родионов Александр Дмитриевич
  • Бердникович Виктор Георгиевич
  • Шабалин Николай Ильич
  • Козлов Станислав Владимирович
  • Будаев Сергей Цымпилович
  • Довыдовский Сергей Андреевич
  • Верхушин Виктор Геннадьевич
RU2272327C1
СПОСОБ УПАКОВКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА 2007
  • Щербина Александр Николаевич
  • Кокорин Александр Геннадьевич
  • Юрков Сергей Иванович
  • Нагаева Наталья Владимировна
  • Реутова Тамара Евгеньевна
RU2357307C1

Иллюстрации к изобретению RU 2 722 214 C1

Реферат патента 2020 года КОНТЕЙНЕР ДЛЯ ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ

Изобретение относится к области ядерных технологий. Контейнер для хранения, транспортировки и захоронения твердых радиоактивных отходов содержит пенал из реакционноспеченного карбида кремния, содержащего свободный кремний в количестве 3-30 мас.%, на поверхность которого нанесен слой газофазного карбида кремния. Наружный слой пенала выполнен из пенометалла с открытой пористостью 60-70% и размером пор 5-6 мм, в поры засыпан порошок карбида бора дисперсностью 40-50 мкм, являющийся защитой окружающей среды от радиационного излучения, исходящего от ВАО. В пенал из карбида кремния помещена канистра из нержавеющей стали толщиной 1-1,5 мм для размещения радиоактивных отходов. Зазор между внутренней поверхностью пенала из карбида кремния и канистрой из нержавеющей стали, составляющий 5 мм, заполнен порошком карбида бора, являющимся защитой окружающей среды от радиационного излучения, исходящего от ВАО. Пенал из карбида кремния герметизирован крышкой из карбида кремния методом реакционной сварки. В качестве пенометалла с открытой пористостью использован пенометалл, выбранный из группы металлов, включающей титан, алюминий, медь и др. Изобретение позволяет повысить прочность контейнера для твердых радиоактивных отходов. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 722 214 C1

1. Контейнер для хранения, транспортировки и захоронения твердых радиоактивных отходов, включающий пенал из реакционноспеченного карбида кремния, содержащего свободный кремний в количестве 3-30 мас.%, на поверхность которого нанесен слой газофазного карбида кремния, отличающийся тем, что наружная часть пенала выполнена из пенометалла с открытой пористостью 60-70% и размером пор 5-6 мм, в порах которого размещен порошок дисперсностью 40-50 мкм, в пенал из карбида кремния помещена канистра из нержавеющей стали толщиной 1-1,5 мм для размещения твердых радиоактивных отходов, зазор между внутренней поверхностью пенала из карбида кремния и канистрой из нержавеющей стали, составляющий 5 мм, заполнен порошком, являющимся защитой окружающей среды от радиационного излучения, исходящего от ВАО, пенал из карбида кремния герметизирован крышкой из карбида кремния методом реакционной сварки.

2. Контейнер по п. 1, отличающийся тем, что в качестве пенометалла с открытой пористостью использован пенометалл, выбранный из группы металлов, включающей алюминий, медь, никель, сталь, бронзу и т.д.

3. Контейнер по п. 1, отличающийся тем, что в качестве порошка, являющегося защитой окружающей среды от радиационного излучения, исходящего от ВАО, используется карбид бора.

Документы, цитированные в отчете о поиске Патент 2020 года RU2722214C1

JP 60022700 A, 05.02.1985
КОНТЕЙНЕР ДЛЯ РАДИОАКТИВНЫХ ОТХОДОВ 1986
  • Кондратьев А.Н.
  • Сорокин В.Т.
  • Стариков О.П.
  • Румянцев Р.М.
  • Куликов А.В.
RU2064695C1
КОНТЕЙНЕР ДЛЯ ТРАНСПОРТИРОВКИ И/ИЛИ ХРАНЕНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2011
  • Амелин Альберт Михайлович
  • Воронцов Владимир Владимирович
  • Гуськов Владимир Дмитриевич
  • Долбенков Владимир Григорьевич
  • Зайцев Борис Иванович
  • Ходасевич Константин Борисович
  • Моренко Александр Иванович
  • Пономарев Андрей Николаевич
  • Шегельман Илья Романович
RU2479876C1
DE 102011115044 A1, 11.04.2013
ПЬЕЗО-ЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО 1930
  • С.В. Хансель
SU36954A1

RU 2 722 214 C1

Авторы

Бабаянц Геннадий Иванович

Бабаянц Константин Геннадьевич

Шарыкин Олег Витальевич

Даты

2020-05-28Публикация

2019-09-13Подача