СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ Российский патент 2020 года по МПК H01L33/00 F21S8/00 

Описание патента на изобретение RU2723967C1

Изобретение относится к полупроводниковым источникам оптического излучения на основе светодиодных нитей - филаментов, изготавливаемых из светодиодных гетероструктур.

В настоящее время со стороны разработчиков полупроводниковых приборов уделяется большое внимание поиску альтернативных эффективных источников света, способных заменить существующие лампы накаливания. Большие успехи в этом направлении достигнуты при использовании в качестве светоизлучающих элементов кристаллов из гетероструктур с множественными квантовыми ямами, например, на основе барьеров InGaN/GaN. При коэффициенте полезного действия 40-50% эти источники около половины подводимой электрической энергии тратят на нагрев источника. Сильный нагрев излучающего прибора ограничивает предельную мощность оптического излучения как из-за теплового разрушения конструкции источника света, так и из-за действия физических механизмов в гетероструктурах, снижающих эффективность источника.

Данное обстоятельство указывает на имеющуюся возможность повышения интенсивности излучения светодиодных источников за счет улучшения их охлаждения. Дальнейший рост интенсивности излучения возможен, если снизить рабочую температуру кристаллов, что возможно за счет применения более эффективных способов охлаждения светодиодных источников излучения по сравнению с применяемыми.

Известны технические решения, направленные на охлаждение светодиодных источников оптического излучения, в которых в конструкцию источника вводится дополнительный элемент - световодный блок [1], радиатор, изготавливаемый из материала с высокой теплоемкостью, например из полимерного материала [2], или металла [3]. Радиатор обеспечивает отвод тепла из активной области источника в его неактивную область и последующее его излучение в окружающее пространство. Радиаторы являются охлаждающими устройствами пассивного типа и, поэтому, их эффективность в значительной степени зависит от внешних факторов, часто неконтролируемых. Недостатком аналогов является малая эффективность охлаждения светодиодного источника оптического излучения в процессе его работы.

Известно техническое решение по охлаждению светодиодных источников излучения, в котором дорабатывается конструкция стеклянной колбы путем отказа от сферической формы и добавлением к колбе теплоотводящей трубки [4]. Это техническое решение не позволяет получить эффективное охлаждение светоизлучающих элементов из-за уменьшения теплопоглощающего объема источника.

Известна светодиодная лампа, содержащая колбу, в которой размещен держатель со штенгелем и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей, цоколь и устройство питания, установленное в цоколе и электрически соединенное с ним и светодиодными нитями [5]. Колба заполнена газом для конвекционного охлаждения светодиодных элементов в нитях.

Данное изобретение по существенным признакам является наиболее близким заявляемому техническому решению и потому выбрано авторами в качестве его прототипа.

Недостатком технического решения - прототипа является не эффективное охлаждение светоизлучающих элементов. Происходит это из-за того, что молекулы применяемого для охлаждения газа обладают массой (за счет того, что их в ядрах имеются по несколько протонов и нейтронов), и обладают малой подвижностью.

Задачей, на решение которой направлено предлагаемое техническое решение, является увеличение эффективности охлаждения светодиодного источника оптического излучения в процессе его работы.

Поставленная задача решается тем, что в светодиодном источнике излучения, содержащем колбу, заполненную газом, имеющим низкий коэффициент вязкости и высокий коэффициент теплопроводности, в которой размещен держатель со штенгелем и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей, цоколь и устройство питания, электрически соединенное по переменному току с цоколем, а положительным и отрицательным электродами со светодиодными нитями, внутренняя поверхность колбы покрыта оптически прозрачным электропроводящим материалом, дополнительно введен источник свободных электронов, температурно сопряженный со светодиодными нитями, причем оптически прозрачный электропроводящий материал электрически соединен с положительным электродом устройства питания, а источник свободных электронов - с отрицательным.

Конструкция светодиодного источника излучения приведена на фиг. 1, на которой обозначено:

1 - колба, заполненная газом, имеющим низкий коэффициент вязкости и высокий коэффициент теплопроводности, внутренняя поверхность которой покрыта оптически прозрачным электропроводящим материалом 4;

2 - держатель со штенгелем 7 и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей 3;

5 - источники свободных электронов, температурно сопряженные со светодиодными нитями;

6 - электрические соединения отрицательного полюса устройства питания с со светодиодными нитями и с источниками свободных электронов;

оптически прозрачного электропроводящего материала с положительным электродом, а источника свободных электронов - с отрицательным;

8 - устройство питания, электрически соединенное по переменному току с цоколем, положительным и отрицательным электродами со светодиодными нитями, оптически прозрачным электропроводящим материалом и источниками свободных электронов;

9 - электрическое соединение источников свободных электронов;

10 - электрическое соединение положительного электрода устройства питания со светодиодными нитями;

11 - электрическое соединение положительного электрода устройства питания с оптически прозрачным электропроводящим материалом.

Оптически прозрачный электропроводящий материал может быть изготовлен в виде оптически прозрачной пленки из высокопроводящего материала, например, оксида индия - олова или сильно легированного полупроводника с малой шириной запрещенной зоны (для исключения поглощения сгенерированных источником излучения фотонов во всем спектре излучения). Ее толщина может составлять 200-400 ангстрем.

Источник свободных электронов может быть изготовлен в виде пленки толщиной порядка нескольких микрометров, нанесенной на внешние грани основания нити, не закрытые люминофорной композицией, из широкозонного полупроводникового материала, например, GaAs с концентрацией электронов в зоне проводимости до 1018 см-3.

Функционирует устройство следующим образом. Известно, что в равновесном состоянии газа со свободными электронами количество тепловой энергии, запасенной в молекулярном и электронном газах, одинаково, а их подвижности отличаются на несколько порядков. Значит, электроны будут переносить тепло более эффективно, чем молекулы. Поскольку различие в массах свободного электрона и молекулы гелия составляет более десяти тысяч, то электронное охлаждение эффективнее молекулярного.

При функционировании светодиодного источника излучения происходит нагрев светодиодных нитей. Тепло от них передается температурно сопряженным источникам свободных электронов. Вылетая с поверхности источников свободных электронов, носители заряда устремляются к оптически прозрачному электропроводящему материалу 4 под действием разности потенциалов между ними. Достигая прозрачный электропроводящий материал, электроны соприкасаются с ним, отдавая тепловую энергию колбе. Таким образом, в предлагаемом техническом решении перенос тепла от светодиодных нитей к колбе, а затем в воздух вокруг колбы осуществляется двумя путями. Во-первых, конвекционным движением молекул газа (как в прототипе), во-вторых, направленным движением электронов, что отличает предложенное решение от прототипа.

Для дополнения молекул гелия электронами необходимо определить, во-первых, различие в значениях их импульсов при тепловом движении электронов и молекул, а во-вторых, зависимость значения коэффициента теплопроводности электронного газа Ke в сравнении с аналогичным параметром для молекул гелия Ki. Коэффициент температуропроводности зависит от плотности вещества ρ, удельной теплоемкости CV и скорости движения следующим образом:

Для получения выигрыша в эффективности охлаждения электронным газом их отношение должно быть больше единицы:

Из равенства тепловой энергии, запасенной электронной и молекулярной подсистемами, найдем

Тогда, учитывая, что соотношение теплоемкостей электронного и молекулярного газов по литературным данным равно 5.7, выражение (1) даст условие получения эффективного охлаждения электронным газом по сравнению с охлаждением молекулярным гелием в виде:

Отсюда найдем требуемую концентрацию электронов в колбе источника излучения:

ne>30Ni.

На практике это соотношение можно заменить равенством: ne>102Ni, что должно обеспечить троекратное увеличение эффективности охлаждения.

Исходя из модели одномолекулярного газа, найдем требуемую концентрацию молекул, а из нее и электронов. Согласно указанной модели концентрация молекул внутри лампы, обеспечивающих давление Р = 0.1 атм, может быть найдено с помощью известного выражения:

где k - постоянная Больцмана, Т=300 K - абсолютная температура. Отсюда найдем: . Следовательно, требуемая концентрация электронов для получения трехкратного увеличения эффективности охлаждения составляет .

Следующий важный параметр, характеризующий подвижность электронов и молекул, это их длина свободного пробега - λе и λi, рассчитываемые по диаметру частицы - de = 2.82 ⋅ 10-13 см и di =2.18 ⋅ 10-8 см:

Это выражение дает: λi = 2.58 ⋅ 10-5 см. Полученные значения длины свободного пробега показывают, что если молекулы в процессе их диффузии от светодиодной нити до стенки стеклянной колбы диаметром 6-7 см испытают порядка 105 столкновений, то электроны всего несколько столкновений. Этот вывод хорошо согласуется с общей концепцией более высоких транспортных возможностей электронов в сравнении с молекулами.

Таким образом, приведенные расчеты показывают физическую реализуемость устройства и подтверждают, что использование в качестве охлаждающего агента электронов вместе с молекулами гелия позволяет повысить эффективность охлаждения светодиодных нитей лампы со стеклянной колбой в несколько раз.

Дополнительное число электронов в источнике свободных электронов создается за счет генерации носителей заряда в нем при поглощении им фотонов из спектра генерируемого светового излучения, отраженных от элементов лампы и попавших на поверхность пленки. В случае генерации источником света белого цвета его спектр излучения совпадает со спектром поглощения GaAs, что гарантирует высокую «утилизацию» источником свободных электронов фотонов, не вышедших из лампы в окружающее пространство.

Источники информации

1. Осветительное устройство на основе теплопроводящего листа со светорассеивающими частицами. Номер патента: 2633924 NL. Квалификационный индекс F21V 29/00, F21V 8/00/ Заявитель: Филипс Лайттинг Холдинг Б.В. Номер заявки: 2015111526. Дата публикации: 16.08.2013.

2. Полимерная композиция для радиаторов охлаждения светоизлучающих диодов и способ ее получения. Номер патента: 2522573 RU. Квалификационный индекс В82В 3/00, C08L 23/12, C08K 3/04, Н05 7/20. Заявитель: Национальный исследовательский технологический университет «МИСиС». Номер заявки 2012146241/04. Дата публикации: 30.10.2012.

3. Светодиодная лампа с радиатором. Патент РФ №2530535 RU. Квалификационный индекс: F21S 8/00, F21Y 101/02. Патентообладатель: Закрытое акционерное общество «КБ «СВЕТА-ЛЕД» (RU). Заявка №2013116967/07 от 12.04.2013.

4. Сысун В.В., Ильченко Д.П. Лампа светодиодная с охлаждением тепловой трубой и осветитель не его основе. Квалификационный индекс: F21S 2/00, F21V 29/00. Патент РФ №2632657 от 26.09.2017.

5. Светодиодная лампа Патент РФ 2546469 от 01.09.11 МПК F21V 19/00 (2006/01) //ГЭ Шичао, ГЭ Техань, ЛЮ Хуабинь (Прототип).

Похожие патенты RU2723967C1

название год авторы номер документа
СВЕТОДИОДНАЯ ЛАМПА 2011
  • Гэ Шичао
  • Гэ Техань
  • Лю Хуабинь
RU2546469C2
Светодиодная лампа 2016
  • Филатов Вадим Викторович
  • Санин Сергей Витальевич
RU2681834C2
БЛОК НИТИ НАКАЛА ДЛЯ МОДЕРНИЗИРОВАННОЙ СВЕТОДИОДНОЙ ТРУБКИ 2016
  • Де Хер Галистео Раймундо
  • Ван Дейк Бернхард Кристиан
  • Тао Хайминь
  • Вэнь Тянь Сян
  • Кондик Саша
  • Стоббелар Питер Йоханнес
  • Велдман Пол Роберт
RU2704605C2
Мощная филаментная светодиодная лампа 2017
  • Сысун Виктор Викторович
RU2680383C1
Светодиодная лампа 2016
  • Филатов Вадим Викторович
RU2636791C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОДИОДНОЙ ЛАМПЫ И ЦОКОЛЯ ЛАМПЫ, СВЕТОДИОДНАЯ ЛАМПА И ЦОКОЛЬ ЛАМПЫ 2012
  • Краснов Николай Титович
RU2517965C2
СВЕТОДИОДНАЯ ЛАМПА 2010
  • Соколов Юрий Борисович
RU2530426C2
СВЕТОДИОДНАЯ ЛАМПА 2018
  • Титков Сергей Иванович
RU2678901C1
ИСТОЧНИК СВЕТА 2010
  • Абаньшин Николай Павлович
  • Горбовицкий Борис Моисеевич
  • Горфинкель Борис Исаакович
  • Жуков Николай Дмитриевич
  • Нагаев Олег Анатольевич
  • Неудахин Александр Валентинович
  • Хазанов Александр Анатольевич
RU2479065C2
Светодиодная лампа с внутренним охлаждением 2019
  • Сысун Виктор Викторович
  • Хорошева Татьяна Николаевна
RU2702342C1

Иллюстрации к изобретению RU 2 723 967 C1

Реферат патента 2020 года СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ

Изобретение относится к полупроводниковым источникам оптического излучения на основе светодиодных нитей - филаментов, изготавливаемых из светодиодных гетероструктур. Заявленный светодиодный источник излучения содержит колбу, заполненную газом, имеющим низкий коэффициент вязкости и высокий коэффициент теплопроводности, в которой размещен держатель со штенгелем и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей, цоколь и устройство питания, электрически соединенное по переменному току с цоколем, а положительным и отрицательным электродами со светодиодными нитями. Внутренняя поверхность колбы покрыта оптически прозрачным электропроводящим материалом. Дополнительно введен источник свободных электронов, температурно сопряженный со светодиодными нитями, причем оптически прозрачный электропроводящий материал электрически соединен с положительным электродом устройства питания, а источник свободных электронов - с отрицательным. Технический результат - повышение эффективности охлаждения источника излучения в процессе его работы. 1 ил.

Формула изобретения RU 2 723 967 C1

Светодиодный источник излучения, содержащий колбу, заполненную газом, имеющим низкий коэффициент вязкости и высокий коэффициент теплопроводности, в которой размещен держатель со штенгелем и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей, цоколь и устройство питания, электрически соединенное по переменному току с цоколем, а положительным и отрицательным электродами со светодиодными нитями, отличающийся тем, что внутренняя поверхность колбы покрыта оптически прозрачным электропроводящим материалом, дополнительно введен источник свободных электронов, температурно сопряженный со светодиодными нитями, причем оптически прозрачный электропроводящий материал электрически соединен с положительным электродом устройства питания, а источник свободных электронов - с отрицательным.

Документы, цитированные в отчете о поиске Патент 2020 года RU2723967C1

СВЕТОДИОДНАЯ ЛАМПА 2011
  • Гэ Шичао
  • Гэ Техань
  • Лю Хуабинь
RU2546469C2
CN 201944638 U, 24.08.2011
ОПОРНАЯ ВТУЛКА ШТОК08, ПЛУНЖЕРОВ И ДРУГИХ ВОЗВРАТНО-ПОСТУПАТЕЛЬНО ДВИЖУЩИХСЯ ДЕТАЛЕЙ 0
  • М. И. Френкель, Ю. А. Вид Кин Л. С. Кошкииа Ндт
SU181452A1
0
SU158205A1
0
SU158341A1
US 20040201990 A1, 14.10.2004.

RU 2 723 967 C1

Авторы

Давыдов Валерий Николаевич

Туев Василий Иванович

Афонин Кирилл Нильевич

Давыдов Михаил Валерьевич

Солдаткин Василий Сергеевич

Вилисов Анатолий Александрович

Даты

2020-06-18Публикация

2019-10-16Подача