СМОТРОВОЕ ОКНО ДЛЯ РАДИАЦИОННО-ЗАЩИТНЫХ КАМЕР ПРОИЗВОДСТВА СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА Российский патент 2020 года по МПК G21F7/03 

Описание патента на изобретение RU2724977C1

Изобретение относится к области атомной техники, в частности к устройствам, применяемым при производстве смешанного уран-плутониевого (СУП) топлива, а именно к устройству смотровых окон для радиационно-защитных камер и предназначено для защиты персонала от смешанного (гамма- и нейтронного) излучения при дистанционном проведении работ.

Основные технологические операции по изготовлению смешанного уран-плутониевого топлива проводят дистанционно в специальных радиационно-защитных камерах с помощью манипуляторов. Для обеспечения визуального контроля за ходом протекания технологического процесса конструкцией защитных камер предусмотрено смотровое окно, которое должно обеспечить защиту персонала от негативных воздействий ионизирующего излучения, а также характеризующийся высокой радиационно-оптической устойчивостью к воздействию ионизирующего излучения.

Из существующего уровня техники известна конструкция смотрового окна радиационно-защитной камеры [Патент RU 2310932, G21F 7/00, опубл. 20.11.2007], содержащая блоки из стеклянных пластин, заключенных в обойму, при этом блок со стороны внутреннего объема камеры установлен с возможностью его замены внутри камеры и состоит, по крайней мере, из одной стеклянной пластины, выполненной из стекла плотностью не менее 4,7 г/см3, причем толщина стеклянной пластины заменяемого блока составляет не менее 10% от суммарной толщины стеклянных пластин всех блоков. Недостатками смотрового окна являются: пирамидальная конструкция с вершиной в сторону рабочей зоны уменьшает поле зрения, большое число пластин уменьшает светопропускание, трудоемкость (материальные и временные затраты) установки и замены стекол, потеря светопроницаемости при воздействии ионизирующего излучения на материал стекла.

Наиболее близким по технической сущности к заявляемому устройству является смотровое радиационно-защитное окно [Патент RU 2352007, G21F 7/03, опубл. 10.04.2009], включающее металлический корпус стеклопакета, внутри которого расположен стеклопакет, состоящий из нескольких блоков стеклопластин, каждый из которых состоит из корпуса блока, в котором расположена как минимум одна стеклопластина, выполненная из стекла, содержащего SiO2, K2O, PbO и CeO2. Радиационно-защитное окно дополнительно содержит жидкостной блок, снабженный смотровыми стеклами, заполненный иммерсионно-защитной жидкостью и соединенный с корпусом стеклопакета. Стекло, из которого выполнены стеклопластины, дополнительно содержит Р2О5, В2О3, Al2O3, ВаО, Sb2O3 и Nb2O3. Недостатками смотрового окна являются: большие габариты стеклопакета и повышенный расход материалов на его изготовление, неудовлетворительное светопропускание (на каждой поверхности стекла потери света составляют примерно 2%), ограниченный срок службы (ресурс работы).

Необходимость упрощения конструкции (уменьшения габаритных размеров) радиационно-защитного смотрового окна с сохранением требуемых коэффициентов ослабления ионизирующего излучения является предпосылкой настоящего изобретения.

Задача изобретения является упрощение конструкции смотрового радиационно-защитного окна с обеспечением необходимого уровня светопропускания и снижения уровня мощности дозы смешанного (гамма- и нейтронного) излучения, испускаемого технологическими продуктами при производстве смешанного уран-плутониевого топлива, до предельно допустимого значения (не более 12 мкЗв/час для персонала категории А по ОСПОРБ-99/2010).

Поставленная задача решается тем, что смотровое радиационно-защитное окно, включающее металлический корпус стеклопакета, внутри которого расположен стеклопакет, состоящий из нескольких блоков стеклопластин и дополнительный жидкостной блок, снабженный смотровыми стеклами и заполненный иммерсионно-защитной жидкостью. Согласно заявляемому изобретению конструкция смотрового защитного окна состоит только из двух блоков стеклопластин, между которыми включен жидкостной блок, стекло, из которого выполнены стеклопластины имеет состав: ВаО - 40-42%, Nb2O5 - 0,3-0,9%, CeO2 - 0,4-0,8%, Sb2O3 - 0,4-1,5%, P2O5 - 55-57%, a иммерсионно-защитная жидкость представляет собой водный раствор состава: 10-30 мас. % нитрата кадмия и 20-40 мас. % нитрата свинца.

Технический результат предлагаемой конструкции смотрового окна для радиационно-защитных камер заключается в повышении технологичности (уменьшение габаритных размеров, массы и числа светоотражающих поверхностей) и обеспечении требуемого светопропускания в видимой области спектра.

Технический результат достигается тем, что радиационно-защитное смотровое окно состоит, по крайней мере, из двух пластин радиационно-стойкого бессвинцового флинтового стекла толщиной 70-100 мм, в пространство между которыми включен жидкостной блок, заполненный иммерсионно-защитной жидкостью. Толщина экранирующего слоя иммерсионно-защитной жидкости -15-25 мм. Предлагаемое решение позволяет обеспечить защиту персонала от воздействия ионизирующего излучения при дистанционной работе с технологическими продуктами производства смешанного уран-плутониевого топлива, проводимой в радиационно-защитных камерах.

Сущность изобретения поясняется чертежом на фиг. 1.

Заявляемое смотровое радиационно-защитное окно состоит из металлического корпуса стеклопакета (1), бессвинцовых флинтовых стекол, состоящих из корпуса блока (2), стеклопластины (3), жидкостного блока, снабженного смотровыми стеклами (4) и заполненного иммерсионно-защитной жидкостью (5) состава: 10-30 мас. % нитрата кадмия и 20-40 мас. % нитрата свинца. Стеклопластины (3) и смотровые стекла (4) выполнены из стекла состава (мас. %): ВаО - 40-42%, Nb2O5 - 0,3-0,9%, CeO2 - 0,4-0,8%, 4Sb2O3 - 0,4-1,5%, P2O5 - 55-57%, обладающего радиационно-оптической устойчивостью сравнимой с известными свинцово-фосфатными аналогами. Плотность используемого стекла в 1,25 раза ниже плотности свинцово-силикатных и свинцово-фосфатных аналогов, что позволяет снизить общий вес конструкции смотрового радиационно-защитного стекла. В частном случае в качестве смотровых стекол (4) возможно использование бессвинцовых радиационно-стойких стекол серии «К», либо свинецсодержащих силикатных или фосфатсодержащих радиационно-стойких стекол серии «ТФ» толщиной 5-10 мм. Смотровое радиационно-защитное окно устанавливают в оконный проем (6) стенки защитной камеры, при этом корпус стеклопакета выступает за пределы радиационно защитной камеры со стороны операторской.

Использование бессвинцового флинтового стекла минимальной толщиной 70 мм и экранирующего слоя иммерсионно-защитной жидкости минимальной толщиной 15 мм обусловлено тем, что заявляемая общая толщина радиационно-защитного смотрового окна обеспечивает снижение до допустимого уровня максимальной дозовой нагрузки от источника ионизирующего излучения (смешанного уран-плутониевого топлива) при его расположении на расстоянии 0,5 метра от окна. Использование бессвинцового флинтового стекла максимальной толщиной 100 мм и экранирующего слоя иммерсионно-защитной жидкости максимальной толщиной 25 мм обусловлено тем, что предлагаемая общая толщина пакета обеспечивает снижение до допустимого уровня максимальной дозовой нагрузки от источника ионизирующего излучения при его расположении непосредственно у радиационно-защитного окна. Заявляемые габариты блоков позволяют обеспечить требуемое светопропускание в видимой области спектра и не требуют повышенных трудозатрат на их установку.

Иммерсионно-защитная жидкость за счет наличия в ней нитрата кадмия в диапазоне 10-30 мас. % и легких элементов (водород и кислород) защищает от нейтронного излучения, а введение в раствор нитрата свинца в диапазоне 20-40 мас. % обеспечивает дополнительную защиту от гамма-излучения. Снижение содержания одного из компонентов ниже заявляемого уровня приведет к снижению радиационно-защитных свойств и увеличению дозовой нагрузки на персонал. В случае увеличения концентрации одного из компонентов (кадмия или свинца) не приведет к значительному снижению мощности смешанного излучения, но, в то же время, приведет к снижению светопропускания в видимой области спектра.

Пример 1. Использование предлагаемой конструкции смотрового окна в радиационно-защитных камерах производства топлива для реакторов на быстрых нейтронах (РБН).

При проведении технологических операций в радиационно-защитной камере одновременно возможно нахождение до 50 кг таблеток смешанного уранплутониевого топлива. В случае содержания PuO2 в смеси до 20%, масса плутониевого диоксида составит не более 10 кг, остальное - UO2. Изотопный состав плутония (мас. %): 238Pu - 2,94; 239Pu - 57,0; 240Pu - 23,05; 241Pu - 10,77; 242Pu - 6,24; изотопный состав урана (мас. %): 235U - 0,925; 238U - 98,4; 236U - 0,623; 234U - 0,002.

В ходе проведения оценки радиационно-опасных факторов, оказывающих негативное воздействие на персонал, установлено, что суммарная МЭД от 50 кг таблеток смешанного уран-плутониевого топлива составляет 2,99⋅103 мкЗв/ч. Для проведения экспериментов использовали защитное стекло состава (мас. %): ВаО - 40-42%, Nb2O5 - 0,3-0,9%, CeO2 - 0,4-0,8%, Sb2O3 - 0,4-1,5%, P2O5 - 55-57%. В качестве иммерсионной жидкости использовали водный раствор состава: 30 мас. % нитрата кадмия и 20 мас. % нитрата свинца.

Кратность ослабления смешанного (гамма- и нейтронного) излучения - 4,8⋅102.

Пример 2. Оценка использования предлагаемой конструкции смотрового окна в радиационно-защитных камерах производства топлива для реакторов на тепловых нейтронах (РТН).

При проведении технологических операций в радиационно-защитной камере одновременно возможно нахождение до 500 кг таблеток смешанного уран-плутониевого топлива. Количество PuO2 в смеси 1,5%, регенерированного UO2 - 81%, обогащенного UO2 - 17,5%, что в пересчете на максимально возможное количество составляет 7,5 кг, 405 кг и 87,5 кг соответственно. Изотопный состав плутония (мас. %): 238Pu - 2,94; 239Pu - 57,0; 240Pu - 23,05; 241Pu - 10,77; 242Pu - 6,24; изотопный состав регенерированного урана (мас. %): 235U - 0,925; 238U - 98,4; 236U - 0,623; 234U - 0,002; изотопный состав обогащенного урана (мас. %): 235U - 19,75; 238U - 79,98; 236U - 0,089; 234U - 0,18.

В ходе проведения оценки радиационно-опасных факторов, оказывающих негативное воздействие на персонал, установлено, что суммарная МЭД от 500 кг таблеток смешанного уран-плутониевого топлива - 3,01⋅103 мкЗв/ч. Для проведения оценки применимости конструкции смотрового окна принимали, что защитное стекло имеет состав аналогичный представленному в примере 1. В качестве иммерсионной жидкости принимали в расчет водный раствор состава: 10 мас. % нитрата кадмия и 40 мас. % нитрата свинца.

Кратность ослабления смешанного (гамма и нейтронного) излучения -4,8⋅102.

Предлагаемая конструкция смотрового окна, в отличие от способа-прототипа, позволяет упростить конструкцию окна за счет включения в состав жидкостного блока, заполненного иммерсионной жидкостью, содержащей нитраты кадмия и свинца, снизить расход материалов на изготовление, обеспечить требуемое светопропускание в видимой области спектра, а также уменьшить массу конструкции смотрового окна за счет использование стекол, плотность которых в 1,25 раза ниже известных аналогов.

Похожие патенты RU2724977C1

название год авторы номер документа
СМОТРОВОЕ РАДИАЦИОННО-ЗАЩИТНОЕ ОКНО 2007
  • Арбузов Валерий Иванович
  • Божко Александр Геннадьевич
  • Волынкин Валерий Михайлович
  • Косьяненко Валерий Анатольевич
  • Кузнецов Сергей Юрьевич
  • Трохов Николай Николаевич
  • Федоров Юрий Кузьмич
RU2352007C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТОК СМЕШАННОГО ОКСИДНОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА 2022
  • Колупаев Дмитрий Никифорович
  • Баранов Олег Геннадьевич
  • Карпенко Александр Александрович
  • Рассамагин Станислав Викторович
  • Падалкин Петр Александрович
  • Апальков Глеб Алексеевич
  • Никитин Сергей Сергеевич
RU2785819C1
СМОТРОВОЙ ПРИБОР 2006
  • Алешин Игорь Николаевич
  • Полякова Инесса Петровна
  • Пуйша Александр Эдуардович
RU2352968C2
Органо-неорганическая композиция 2020
  • Евстропьев Сергей Константинович
  • Дукельский Константин Владимирович
  • Быков Максим Валерьевич
  • Саратов Артем Сергеевич
  • Кулагина Анастасия Сергеевна
RU2729264C1
СМОТРОВОЕ ОКНО РАДИАЦИОННО-ЗАЩИТНОЙ КАМЕРЫ 2005
  • Ледовских Николай Михайлович
  • Курунов Юрий Иосифович
  • Гордеев Ян Николаевич
RU2310932C2
УСТРОЙСТВА И СПОСОБЫ ПРЕДОТВРАЩЕНИЯ КРИТИЧНОСТИ ПРИ ПРОИЗВОДСТВЕ ЯДЕРНОГО ТОПЛИВА 2007
  • Вандергеинст Ален
RU2450379C2
Иммерсионная композиция 2016
  • Гатчин Юрий Арменакович
  • Евстропьев Сергей Константинович
  • Кисляков Иван Михайлович
  • Евстропьев Кирилл Сергеевич
  • Дукельский Константин Владимирович
  • Волынкин Валерий Михайлович
RU2660054C1
ОГНЕСТОЙКИЙ МНОГОСЛОЙНЫЙ СТЕКЛОПАКЕТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Хайруллин Наиль Абдулович
  • Казиев Махач Магомедович
  • Злотопольский Арнольд Иосифович
  • Мтиуллин Мансур Хамзинович
  • Мифтяхетдинов Рушат Ахмятович
RU2288898C1
ОСТЕКЛЕНИЕ, СНАБЖЕННОЕ БЛОКОМ ТОНКИХ СЛОЕВ, ДЕЙСТВУЮЩИХ НА СОЛНЕЧНОЕ ИЗЛУЧЕНИЕ 2006
  • Беллио Сильвэн
RU2436744C2
СПОСОБ РАСТВОРЕНИЯ НЕКОНДИЦИОННОЙ ПРОДУКЦИИ ПРОИЗВОДСТВА МОКС-ТОПЛИВА 2021
  • Алексеенко Владимир Николаевич
  • Жабин Андрей Юрьевич
  • Дьяченко Антон Сергеевич
  • Коробейников Артем Игоревич
  • Аксютин Павел Викторович
  • Поляков Игорь Евгеньевич
RU2754354C1

Иллюстрации к изобретению RU 2 724 977 C1

Реферат патента 2020 года СМОТРОВОЕ ОКНО ДЛЯ РАДИАЦИОННО-ЗАЩИТНЫХ КАМЕР ПРОИЗВОДСТВА СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА

Изобретение относится к области атомной техники, в частности к оборудованию, применяемому при производстве смешанного уран-плутониевого топлива, а именно к устройству смотровых окон для радиационно-защитных камер, и предназначено для защиты персонала от смешанного (гамма и нейтронного) излучения при дистанционном проведении работ. Cмотровое радиационно-защитное окно состоит из металлического корпуса стеклопакета, бессвинцовых флинтовых стекол, состоящих из корпуса блока и стеклопластины, жидкостного блока, снабженного смотровыми стеклами и заполненного иммерсионно-защитной жидкостью. Смотровое радиационно-защитное окно устанавливают в оконный проем стенки защитной камеры. Изобретение позволяет повысить технологичность (уменьшить габаритные размеры, массу и число светоотражающих поверхностей) и обеспечить требуемое светопропускание в видимой области спектра. 1 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 724 977 C1

1. Смотровое радиационно-защитное окно, включающее металлический корпус стеклопакета, внутри которого расположен стеклопакет, состоящий из нескольких блоков стеклопластин, и дополнительный жидкостной блок, снабженный смотровыми стеклами и заполненный иммерсионно-защитной жидкостью, отличающееся тем, что конструкция смотрового защитного окна состоит только из двух блоков стеклопластин, между которыми включен жидкостной блок, стекло, из которого выполнены стеклопластины, имеет состав: ВаО 40-42%, Nb2O5 0,3-0,9%, CeO2 0,4-0,8%, Sb2O3 0,4-1,5%, P2O5 55-57%, а иммерсионно-защитная жидкость представляет собой водный раствор состава: 10-30 мас. % нитрата кадмия и 20-40 мас. % нитрата свинца.

2. Смотровое окно по п. 1, отличающееся тем, что в качестве смотровых стекол жидкостного блока используют либо бессвинцовые «кроновые» радиационно стойкие стекла серии К, либо свинецсодержащие силикатные или фосфатсодержащие стекла серии ТФ.

Документы, цитированные в отчете о поиске Патент 2020 года RU2724977C1

СМОТРОВОЕ РАДИАЦИОННО-ЗАЩИТНОЕ ОКНО 2007
  • Арбузов Валерий Иванович
  • Божко Александр Геннадьевич
  • Волынкин Валерий Михайлович
  • Косьяненко Валерий Анатольевич
  • Кузнецов Сергей Юрьевич
  • Трохов Николай Николаевич
  • Федоров Юрий Кузьмич
RU2352007C1
РАДИАЦИОННО-ЗАЩИТНЫЙ МАТЕРИАЛ 2008
  • Тюльнин Валентин Александрович
  • Тюльнин Дмитрий Валентинович
RU2366010C1
ПРИБОР ДЛЯ ИЗЛУЧЕНИЯ РАВНОВЕСИЯ НИТИ НА ВЫПУКЛОЙ ПОВЕРХНОСТИ 1949
  • Алешин П.А.
SU88188A1
Устройство обработки сигнала для системы автоматической фокусировки объектива 1987
  • Коротков Валентин Павлович
  • Москаленко Владимир Федорович
  • Петельский Александр Борисович
SU1509813A1
СПОСОБ ПОЛУЧЕНИЯ [1-C]-АЦЕТАТА НАТРИЯ 2003
  • Корсаков М.В.
  • Яковлева В.Д.
  • Корсакова Л.Н.
  • Мостова М.И.
RU2223118C1

RU 2 724 977 C1

Авторы

Обедин Андрей Викторович

Алексеенко Владимир Николаевич

Дьяченко Антон Сергеевич

Коробейников Артем Игоревич

Аксютин Павел Викторович

Козин Олег Алексеевич

Даты

2020-06-29Публикация

2019-10-16Подача