Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах Российский патент 2020 года по МПК C12Q1/68 

Описание патента на изобретение RU2728612C1

Изобретение относится к ветеринарной микробиологии, в частности к методам определения видовой принадлежности мяса с помощью полимераз-ной цепной реакции.

Известно использование ПЦР в реальном времени для определения ДНК следующих животных - лошади, коровы, свиньи, осла, курицы, индейки, кошки, собаки и кролика (https://stylab.ru/netcat_files/userfiles/Files/Articles/Meat/Meat_1_04_2013.pdf.).

Наиболее близким по технической сущности является способ идентификации видовой принадлежности тканей животного в продовольственном сырье, кормах и пищевых продуктах (патент РФ №№2694713, кл. C12Q 1/68, 2019 г.), включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащую фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: СУ5-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в соотношении 1:1 и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.

Недостатком известного технического решения является недостаточная точность из-за использования суспензии бактериофага для внутреннего контрольного образца, которая требует предварительную обработку, включая центрифугирование, концентрирование и перевод в определенный буферный раствор, что влечет за собой значительную трудоемкость и финансовые затраты.

Техническим результатом является повышение точности идентификации видовой принадлежности, упрощение процесса подготовки внутреннего контрольного образца и уменьшение стоимости этого процесса.

Технический результат достигается тем, что в способе идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах, включающем выделение ДНК из ткани животного сорбци-онным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси содержащую, фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: СУ5-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в соотношении 1:1 и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный, согласно изобретению выделяют ДНК из ткани собаки домашней (Canis lupus familiaris) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани собаки домашней (Canis lupus familiaris) со следующей нуклеотидной последовательностью:

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд, при этом для ДНК ткани собаки используют флуоресцентный краситель FAM/Green.

Новизна заявляемого способа состоит в идентификации видовой принадлежности ткани собаки с помощью полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени, что в свою очередь позволяет с высокой точностью определить наличие ДНК ткани собаки в продовольственном сырье, кормах и пищевых продуктах.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Заявляемый способ рекомендовано использовать в специализированных ветеринарных, санитарно-эпидемиологических, животноводческих, сельскохозяйственных предприятиях, что соответствует критерию «промышленная применимость».

Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах осуществляется следующим образом.

Для исследования сухих кормов и мясных полуфабрикатов на содержание ДНК ткани собаки проводят полимеразную цепную реакцию с флуоресцентной детекцией с применением термоциклера типа Rotor-Gene Q при соответствующих температурно-временных режимах амплификации и измеряют накопление флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей: FAM/Green для специфического сигнала для ДНК ткани собаки домашней (Canis lupus familiaris) и Cy5/Red - для внутреннего контрольного образца. Интерпретацию результатов проводят на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.

Для повышения точности идентификации мяса для внутреннего контрольного образца используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, если концентрация фаговых частиц отклоняется в большую или меньшую сторону, то наблюдаются повторности сомнительных образцов. Для положительного контрольного образца используют смесь, содержащую фрагменты геномов нативного бактериофага Т4 и ДНК ткани собаки домашней (Canis lupus familiaris) взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: СУ5-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд.

Использование для разных видов контроля различные формы материала бактериофага Т4: фаголизата и фрагмента генома нативного бактериофага Т4 со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов. Кроме того, использование фаголизата бактериофага Т4, представляющего собой суспензию бактериофага, полученную после лизиса зараженных фагом клеток ткани, повышает чувствительность и упрощает процесс идентификации ткани собаки в продуктах. Использование нативного бактериофага, т.е. неповрежденного при исследовании, улучшает синтез ДНК, что также улучшает качество процесса идентификации.

При конструировании праймеров и зонда основными требованиями были: степень гомологии (комплементарность) с выбранным участком гена; отсутствие самокоплементарных участков внутри олигонуклеотидов и комплементарности друг другу, чтобы не допускать возникновения устойчивых вторичных структур (димеров); близость значений температуры отжига праймеров.

Конструирование специфических праймеров и зонда осуществляли с помощью компьютерных программ на основании анализа нуклеотидных последовательностей референтных штаммов и изолятов, опубликованных на ресурсе GenBank и подбора условий для проведения ПЦР в реальном времени с применением разработанных праймеров и зонда, несущего флуорофор и тушитель, и комплементарного части амплифицируемого со специфическими праймерами фрагмента.

Праймеры, специфичные для собаки домашней (Canis ) были отобраны на основе митохондриальных последовательностей ДНК генома собаки домашней (Canis lupus familiaris isolate MS 10016 mitochondrion, partial genome, код доступа KY798516.1 complete genome, участок между 14281 и 14392). Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность. Для детекции продуктов амплификации были подобраны олигонуклеотидные флуоресцентно-меченные зонды Canis Р (комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров Canis F и Canis R) Зонд был помечен красителем FAM.

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд

Используя программу "Oligo 6.0", описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Ни одна из выбранных последовательностей не обнаружена в геноме любых видов растений и животных, которые потенциально встречаются вблизи тех, которые определены в кормах и пищевых продуктах.

В качестве внутреннего контроля использовался фаголизат бактериофага Т4, имеющий геномную ДНК порядка 170 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM13 7666.1). В результате анализа был выбран участок между 400 и 600 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность.

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: СУ5-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд.

Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем Су5. Используя программу "Oligo 6.0", описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Пример конкретного осуществления способа идентификации ткани собаки

Для подтверждения эффективности способа были использованы сухие корма в виде рыбной и мясной муки; сырые и термически обработанные мясные продукты, т.е. мясные полуфабрикаты.

От пробы плотной консистенции отбирают на исследование общую пробу весом 10-50 г. Гранулированную или консервированную продукцию перед исследованием (10-20 г) растирают в ступке до гомогенного состояния.

Лабораторные пробы (20-40 мг) отбирают на исследование в одноразовые микропробирки вместимостью 1,5 мл в двух повторах. Отобранные лабораторные пробы направляют на выделения ДНК.

Исследование проводят с помощью набора реагентов «ПЦР-Собака-ФАКТОР». Набор состоит из комплекта реагентов для проведения мультиплексной ПЦР (комплект №1) и комплекта контрольных образцов (комплект №2). Набор выпускается в двух вариантах: 1) Для анализа 55 образцов (включая контрольные образцы)

2) Для анализа 110 образцов (включая контрольные образцы). Наборы используют в соответствии с инструкцией по применению набора реагентов «ПЦР-СОБАКА-ФАКТОР» для определения ДНК ткани собаки домашней (Canis lupus familiaris) методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в РВ ТУ 21.10.60-163-51062356-2018, для диагностики in vitro, http://www.vetfaktor.ru/. Состав набора приведен в Таблицах 1 и 2.

Исследования состоит из трех этапов:

экстракция нуклеиновая кислота (НК);

проведение реакции ПЦР РВ;

учет результатов анализа. Для экстракции (выделение) НК из исследуемых проб отбирают необходимое количество одноразовых пробирок объемом 1,5 мл, включая отрицательный контроль выделения. Во все пробирки с исследуемыми образцами, включая пробирку для отрицательного контрольного образца (ОКО), вносят

*Возможна легкая опалесценция

по 10 мкл внутреннего контрольного образца (ВКО) для ткани собаки в качестве которого, используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл.

Следующий этап это подготовка образцов к проведению ПЦР.

Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы - 10 мкл.

Успешное прохождение реакции контролируют использованием положительного контрольного образца (ПКО) СОБАКА, ВКО СОБАКА и ДНК буфера. В качестве ПКО используют смесь содержащую фрагменты геномов ткани собаки и нативного бактериофага Т4 взятых в соотношении 1:1 со следующими нуклеотидными последовательностями:

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд.

T4F TACATATAAATCACGCAAAGC

T4R TAGTATGGCTAATCTTATTGG

Т4Р CY5 ACATTGGCACTGACCGAGTTC.

В отдельной пробирке смешивают компоненты набора из расчета на каждую реакцию:

5 мкл ПЦР СМЕСЬ СОБАКА;

10 мкл ПЦР БУФЕР СОБАКА;

0,5 мкл TAQ POLYMERASE

Перемешивают смесь на вортексе и сбрасывают капли кратковременным центрифугированием.

Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси.

Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора и используют программное обеспечение прибора. Далее проводят ПЦР РВ с флуоресцентной детекцией.

Параметры температурно-временного режима амплификации на приборе «Rotor-Gene Q» представлены в таблице 3.

Интерпретация результатов анализа. Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в соответствии с инструкцией производителя к прибору.

Учет результатов ПЦР РВ проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).

Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4.

Появление любого значения Ct в таблице 4 результатов для отрицательного контроля этапа экстракции ВК - на канале FAM/Green и для отрицательного контроля этапа ПЦР К - на любом из каналов свидетельствует о наличии контаминации реактивов или образцов. В этом случае результаты анализа для всех проб считаются недействительными. Требуется повторить анализ всех проб, а также предпринять меры по выявлению и ликвидации источника контаминации.

Образцы, для которых значение Ct по каналу Cy5/Red отсутствует или превышает 35 цикл (и при этом не получен положительный результат на канале FAM/Green) требуют повторного проведения исследования с этапа экстракции ДНК. Задержка в значениях пороговых циклов для исследуемых образцов указывает на присутствие ингибиторов в пробе(ах) или на ошибки при экстракции ДНК или при постановке реакции ПЦР РВ.

В образце обнаружена ДНК ткани собаки домашней (Canis lupus familiaris), если наблюдается экспоненциальный рост сигнала на канале FAM/Green, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4).

Если для исследуемого образца по каналам FAM/Green значение Ct определяется позднее 37 цикла при корректном прохождении положительных и отрицательных контролей, образец исследуется повторно с этапа экстракция ДНК. Если при повторной постановке Ct более 37 результат считается отрицательным.

Образец считается отрицательным ДНК (Canis lupus familiaris) не обнаружена), если не определяется значение Ct (не наблюдается рост специфического сигнала) на канале FAM/Green при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4), а значение Ct по каналу Cy5/Red менее 35.

Для исследуемых образцов (сухой корм и мясные полуфабрикаты) предел точности содержания ткани собаки представлен в таблице 5.

Для доказательства эффективности использования ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемого способа с прототипом, в котором использовался метод ПЦР с использованием внутреннего контроля в виде суспензии бактериофага, а в заявляемом - использовался фаголизат бактериофага и геном нативного бактериофага. Оказалось чувствительность ПЦР в заявляемом способе при обнаружении примеси ткани собаки в кормах и в мясных фаршах примерно выше в 1,3 раза. Трудоемкость и стоимость процесса определения ДНК ткани собаки в кормах и фаршах снизилась на 3,2-5%.

--->

Перечень последовательностей

<110> Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И.Т. Трубилина».

<120> Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах

<140> 2019133140

< 160> 6

< 210> 1

< 211> 20

< 212> ДНК

< 213> Canis lupus familiaris

< 400> 1

attcggcctacatccgtgac 20

< 210> 2

< 211> 20

< 212> ДНК

< 213> Canis lupus familiaris

< 400> 2

agaagacccctgctacgact 20

< 210> 3

< 211> 19

< 212> ДНК

< 213> Canis lupus familiaris

< 400> 3

cttgagtggagtagggcgg 19

< 210> 4

< 211> 21

< 212> ДНК

< 213> Бактериофаг Т4

< 400> 4

tacatataaatcacgcaaagc 21

< 210> 5

< 211> 21

< 212> ДНК

< 213> Бактериофаг Т4

< 400> 5

tagtatggctaatcttattgg 21

< 210> 6

< 211> 21

< 212> ДНК

< 213> Бактериофаг Т4

< 400> 6

acattggcactgaccgagttc 21

<---

Похожие патенты RU2728612C1

название год авторы номер документа
Тест-система для идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Котельникова Александра Андреевна
  • Барашкин Михаил Иванович
  • Кощаева Ольга Викторовна
  • Исаева Альбина Геннадьевна
  • Дельцов Александр Александрович
RU2728382C1
Способ выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Владимир Олегович
  • Котельникова Александра Андреевна
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Семененко Марина Петровна
  • Неверова Ольга Петровна
  • Кощаева Ольга Викторовна
  • Семенов Владимир Григорьевич
RU2726248C1
Способ идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Исаева Альбина Геннадьевна
  • Шаравьев Павел Викторович
  • Лоретц Ольга Геннадьевна
  • Лихоман Александр Владимирович
RU2742952C1
Тест-система для выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Лунева Альбина Владимировна
  • Кривоногова Анна Сергеевна
  • Кузьминова Елена Васильевна
  • Гугушвили Нино Нодариевна
  • Тюрин Владимир Григорьевич
RU2726555C1
Тест-система для идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Дробин Юрий Дмитриевич
  • Котельникова Александра Андреевна
  • Лоретц Ольга Геннадьевна
  • Быкова Ольга Александровна
  • Щукина Ирина Владимировна
  • Тюрин Владимир Григорьевич
RU2728639C1
Способ идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Инюкина Татьяна Андреевна
  • Нестеренко Антон Алексеевич
  • Семененко Марина Петровна
  • Семенов Владимир Григорьевич
  • Забашта Сергей Николаевич
RU2728662C1
Тест-система для идентификации ДНК тканей крыс и мышей в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Дробин Юрий Дмитриевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Щукина Ирина Владимировна
  • Гугушвили Нино Нодариевна
  • Донник Ирина Михайловна
  • Усенко Валентина Владимировна
RU2725539C1
Способ определения ДНК ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Котельникова Александра Андреевна
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Гугушвили Нино Нодариевна
  • Исаева Альбина Геннадьевна
  • Шаравьев Павел Викторович
  • Усенко Валентина Владимировна
RU2714287C1
Способ идентификации ДНК ткани медведя (Ursus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Кощаева Ольга Викторовна
  • Барашкин Михаил Иванович
  • Донник Ирина Михайловна
  • Усенко Валентина Владимировна
  • Забашта Николай Николаевич
RU2726427C1
Тест-система для идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Лысенко Юрий Андреевич
  • Шаравьев Павел Викторович
  • Кривоногова Анна Сергеевна
  • Кузьминова Елена Васильевна
  • Усенко Валентина Владимировна
  • Забашта Сергей Николаевич
RU2725215C1

Иллюстрации к изобретению RU 2 728 612 C1

Реферат патента 2020 года Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах

Изобретение относится к области биотехнологии. Изобретение представляет собой способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах, включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5x10 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащей фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:

T4F TACATATAAATCACGCAAAGC

T4R TAGTATGGCTAATCTTATTGG

Т4Р CY5 ACATTGGCACTGACCGAGTTC, взятых в соотношении 1:1, и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции отрицательный, согласно изобретению выделяют ДНК из ткани собаки домашней (Canis lupus familiaris) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани собаки домашней (Canis lupus familiaris) со следующей нуклеотидной последовательностью:

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд, при этом для ДНК ткани собаки используют флуоресцентный краситель FAM/Green. Изобретение позволяет повысить точность идентификации видовой принадлежности и упростить процесс подготовки отбора образцов. 5 табл.

Формула изобретения RU 2 728 612 C1

Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах, включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащей фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:

T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер

T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер

Т4Р: СУ5-5'-ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в соотношении 1:1 и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный, отличающийся тем, что выделяют ДНК из ткани собаки домашней (Canis lupus familiaris) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани собаки домашней (Canis lupus familiaris) со следующей нуклеотидной последовательностью:

Canis F ATTCggCCTACATCCgTgAC прямой праймер

Canis R AgAAgACCCCTgCTACgACT обратный праймер

Canis Р FAM-CTTgAgTggAgTAgggCgg-BHQ1 зонд,

при этом для ДНК ткани собаки используют флуоресцентный краситель FAM/Green.

Документы, цитированные в отчете о поиске Патент 2020 года RU2728612C1

Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах 2018
  • Малышев Денис Владиславович
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Гулюкин Михаил Иванович
  • Лайшев Касим Анверович
  • Юлдашбаев Юсупжан Артыкович
  • Мирошников Сергей Александрович
  • Шаравьев Павел Викторович
  • Семененко Марина Петровна
  • Молчанов Алексей Вячеславович
  • Баннов Василий Александрович
  • Дробин Юрий Дмитриевич
RU2694713C1
CN 106435008 A, 22.02.2017
CN 108624659 A, 09.10.2018.

RU 2 728 612 C1

Авторы

Черных Олег Юрьевич

Баннов Василий Александрович

Малышев Денис Владиславович

Черных Владимир Олегович

Лысенко Александр Анатолиевич

Котельникова Александра Андреевна

Кощаев Андрей Георгиевич

Кривонос Роман Анатольевич

Дробин Юрий Дмитриевич

Шевкопляс Владимир Николаевич

Шевченко Александр Алексеевич

Хахов Латиф Асланбиевич

Быкова Ольга Александровна

Лоретц Ольга Геннадьевна

Кривоногова Анна Сергеевна

Коломиец Сергей Николаевич

Забашта Николай Николаевич

Даты

2020-07-30Публикация

2019-10-16Подача