Изобретение относится к вычислительной технике, информационно-вычислительным сетям и средам, к обработке данных и может быть использовано в процессах управления требованиями к источникам вычислительных и других ресурсов и их распределению в распределенных информационно-вычислительных средах.
В настоящее время все большее распространение в развитии информационных технологий приобретают облачные вычисления [OpenStack Compute Administration Guid [Электронный ресурс] URL: https://docs.openstack.org/newton/admin-guide/compute.html] в вычислительной облачной среде – распределенная информационно-вычислительная среда [Облачные вычисления (Cloud computing) [Электронный ресурс] URL: http://www.tadviser.ru/index.php/Статья:Облачные_вычисления_(Cloud_computing)]. Вычислительное облако формируется из вычислительных и других ресурсов, поступающих из различных источников. Характер поступления ресурсов [ГОСТ Р 56174-2014 Информационные технологии (ИТ). Архитектура служб открытой Грид-среды. Термины и определения], а именно возможности управления, вероятности, времена и потенциальные объемы исполнения заказов, в общем случае различаются. На базе вычислительного облака функционируют различные информационно-вычислительные системы. На базе ресурсов в вычислительном облаке развертываются виртуальные машины, на которых устанавливаются различные экземпляры приложений [ГОСТ Р 54456-2011. Телевидение вещательное цифровое. Домашняя мультимедийная платформа. Класс 1.0. Основные параметры].
Каждая информационно-вычислительная система предъявляет специфические требования к ресурсам. Таким образом, вычислительное облако должно соответствовать предъявляемым требованиям по вычислительным ресурсам со стороны информационно-вычислительных систем. Возникает задача рационального управления предоставлением ресурсов в вычислительном облаке для информационно-вычислительной системы в условиях неопределенности характеристик источников предоставления ресурсов.
Известен система и способ [Файнберг М.А. и др. «Вычислительная система и способ оптимального управления хранением и передачей компьютерных программ в вычислительной сети», патент РФ № 2226711 С2 опубл. 10.04.2004, G06F 15/177] управления хранением, передачей и обменом информацией в вычислительной сети, который обеспечивает технический результат в виде интерактивного программирования в сети за счет обмена программными модулями для выборки одного программного модуля из множества взаимодействующих отдельных независимых выполняемых машиной программных модулей и пересылки его в удаленную вычислительную машину в ответ на ее запрос. Данный способ не позволяет учитывать характеристики имеющихся ресурсов в вычислительной сети.
Известен способ [Марр М. Д., Ковальски М. П. «Масштабирование экземпляра виртуальной машины», патент РФ № 2616167 C2 опубл. 12.04.2017, G06F 9/455] технический результат заключается в том, чтобы позволить экземпляру виртуальной машины наращиваться или сокращаться в размере и функциональных возможностях по требованию или согласно фактическому спросу на ресурсы, которые предоставляет виртуальная машина. Для этого используется служба масштабирования, которая выделяет дополнительные вычислительные ресурсы (например, процессоры, память и т.д.) экземпляра виртуальной машины (или другого вычислительного экземпляра) и/или освобождает вычислительные ресурсы из экземпляра виртуальной машины согласно запросам и/или пороговым величинам.
Известна система [Медведь А.Н. и др. «Система управления ресурсами образовательного учреждения», патент РФ № 2565489 С2 опубл. 20.10.2015, G06Q 10/06, G06Q 50/20] управления ресурсами образовательного учреждения, которая обеспечивает технический результат в повышении эффективности управления ресурсами образовательного учреждения. Способ позволяет ускорить процесс формирования расписания образовательного учреждения и его оптимизацию через предоставление пользователю дополнительных данных о ресурсах, наличии и состоянии оборудования, в частности технических средств обучения, и возможности их заказа в необходимой комплектности. Данный способ не позволяет учитывать различие источников поступления предоставления ресурсов при управлении поступлением вычислительных ресурсов.
Известна система [Захаров И.С. и др. «Система распределения ресурсов», патент РФ № 2189073 опубл. 10.09.2002, G06F17/60] происходит распределение ресурсов по локализованным центрам, каждый из которых нуждается в некотором количестве ресурсов. Распределение ресурсов может производиться как по приоритетам, так и в обычном (без приоритетов) режиме. Способ решает только задачу распределения выделенных ресурсов, без реализации полного цикла управления – от заказа ресурсов до распределения.
Способ и система [Смирнов Д.Е. «Система справочно-информационной поддержки пользователя ЭВМ, способ ее формирования и применения», патент РФ № 2303809 C2 опубл. 27.07.2007, G06F 9/44] Корпорации «Самсунг Электроникс», предназначена для решения ряда задач распределения ресурсов и посредством компьютера формируют модель использования и перераспределения ресурсов. Однако, используемая модель, не включает ряд моделей (например, модель анализа иерархий, модель искусственной нейросети и др.) необходимых для формирования модели IaaS [Infrastructure as a Service - Инфраструктура как сервис [Электронный ресурс] URL: https://ru.bmstu.wiki/IaaS_(Infrastructure-as-a-Service)], а вычислительная система не предназначена для целей реализации модели IaaS.
Наиболее близким по технической сущности и выполняемым функциям аналогом (прототипом) к заявляемому является способ интеллектуального управления распределением ресурсов «Способ и система интеллектуального управления распределением ресурсов в облачных вычислительных средах» [патент РФ № 2609076 опубл. 30.01.2017, G06F 9/00] заключающийся в том, что посредством компьютера формируют модель использования и перераспределения ресурсов в облачных вычислительных средах – в вычислительном облаке с использованием концепции интеллектуальных алгоритмов, последовательно выполняя совокупность операций, включающую три основных этапа: на первом этапе в вычислительном облаке выделяют ресурсы запускаемому экземпляру, на втором этапе проводят прогноз динамических параметров функционирования хостов (серверов) вычислительного облака, на третьем этапе осуществляют динамическое перераспределение ресурсов между экземплярами приложений в вычислительном облаке.
При такой совокупности описанных элементов достигается повышение эффективности использования и перераспределения информационных ресурсов путем интеллектуального управления распределением ресурсов в облачных средах, своевременное удовлетворение потребителей ресурсов, простота использования, скорость выполнения операций. При этом достигается равномерное и оптимальное распределение нагрузки с минимальной потерей производительности, сокращение капитальных и операционных затрат при предоставлении вычислительных мощностей с использованием модели IaaS.
Техническая проблема – распределение ресурсов выполняется только на основе сформированного вычислительного облака, что приводит к увеличению времени развертывания новых экземпляров приложений.
Технический результат изобретения – снижение времени развертывания экземпляров приложений информационно-вычислительной системы в вычислительном облаке (распределенной информационно-вычислительной среде), за счет повышения интеллектуальности управления поступлением ресурсов от разнородных источников.
Техническая проблема решается тем, что способ управления распределением ресурсов в распределенных информационно-вычислительных средах, предполагающий формирование модели использования и перераспределения ресурсов в облачных вычислительных средах, формируемую посредством использования концепции интеллектуальных алгоритмов, последовательным выполнением совокупности операций, в которой:
- на первом этапе в вычислительном облаке выделяют ресурсы запускаемому экземпляру приложения,
- на втором этапе проводят прогноз динамических параметров функционирования хостов (серверов) вычислительного облака,
- на третьем этапе осуществляют динамическое перераспределение ресурсов между экземплярами вычислительного облака.
Для распределения ресурсов посредством компьютера может использоваться известная модель [15 Ways to Tell Its Not Cloud Computing [Электронный ресурс] URL: https://redmonk.com/jgovernor/2008/03/13/15-ways-to-tell-its-not-cloud-computing/] требований, использования и перераспределения ресурсов в распределенных информационно-вычислительных средах.
Модель требований, использования и перераспределения ресурсов представляет собой план управляющих воздействий на ресурсы распределенной информационно-вычислительной среды и определяет:
– требования к источникам ресурсов, устанавливающие объемы и характеристики предоставляемых источниками ресурсов;
– использование ресурсов, устанавливающих соответствие между экземплярами приложений и имеющимися ресурсами;
– перераспределение ресурсов, устанавливающее порядок динамического перераспределения ресурсов между экземплярами приложений.
При этом модель формируют для максимализации показателя
где
На фиг. 1 показана в общем виде проблема распределения ресурсов между приложениями, которые должны функционировать в вычислительном облаке. Видно, что в вычислительном облаке 1.1 есть потребность в запуске 3 экземпляров приложений, но для экземпляров приложений 1 и 3 не достаточно ресурсов, они попадают под ресурсные ограничения, для решения данной задачи применяется динамическое программирование. После применения способа динамического программирования, как видно, в облаке 1.2 запущены уже 2 экземпляра приложений, но 3 экземпляр приложения все так же не запущен из-за отсутствия для него ресурсов в вычислительном облаке. Для запуска данного экземпляра приложения необходимо запросить ресурсы для вычислительного облака у источников поступления ресурсов. После поступления ресурсов в вычислительное облако 1.3 становится возможным запуск экземпляра приложения 3.
При этом на первом этапе формирования модели выбирают наилучший адекватный хост для размещения экземпляра приложения в вычислительном облаке на основе анализа иерархий [патент РФ № 2609076 опубл. 30.01.2017, G 06 F 9/00]. На втором этапе прогноз динамических параметров функционирования хостов вычислительного облака проводят путем анализа и прогноза нагрузки вычислительного облака посредством модифицированной модели искусственных нейронных сетей Элмана с вейвлет-функцией активации и обучением при помощи искусственных иммунных систем на основе исторических данных, сформированных при кластеризации методом нечетких С-средних [Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. — 1981]. На третьем этапе динамическое перераспределение ресурсов [патент РФ № 2609076 опубл. 30.01.2017, G06F 9/00] между экземплярами приложений вычислительного облака выполняют путём минимизации неравномерности использования нагрузки на основе ситуационного поиска решений.
Согласно изобретению, дополнен следующими операциями:
1. На первом этапе совокупности операций по формированию модели производится оценка поступления ресурсов от источников, каждый источник характеризуется индексом поступления ресурсов, который задается как отношение поступивших ресурсов к запрошенным у источника.
2. На втором этапе дополнительно учитываются необходимые ресурсы для функционирующих экземпляров приложений, а также составляется перечень ресурсов, которые необходимы для экземпляров приложений, в которых имеется потребность.
3. Четвёртым этапом, на котором запрашиваются необходимые ресурсы у источников с более высоким индексом поступления ресурсов с целью получения недостающих ресурсов и последующего динамического распределения между экземплярами приложений.
Перечисленная новая совокупность существенных признаков позволяет за счет дополнительного учета характеристик источников при запросе дополнительных ресурсов не только распределять ресурсы, имеющиеся в вычислительном облаке, но и запрашивать недостающие ресурсы для вычислительного облака и выделять их экземплярам, которым не хватило ресурсов, тем самым повысить устойчивости функционирования информационно-вычислительной системы путем запуска всех необходимых экземпляров приложений в вычислительном облаке.
Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».
Результаты поиска известных решений в области управления информационно-вычислительными системами и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Заявленный способ поясняется чертежами, на которых показано:
– на фиг. 1 представлена концептуальная схема управления распределением ресурсов в информационно-вычислительных средах;
– на фиг. 2 приведена обобщенная схема управления ресурсами. Здесь указана последовательность выполнения этапов способа и какие инструментальные средства используются на каждом из этапов;
– на фиг. 3 приведена последовательность выполнения операций первоначального выделения ресурсов экземпляру приложения вычислительного облака при использовании метода анализа иерархий (первый этап формирования модели);
– на фиг. 4 представлена последовательность выполнения операции прогноза динамических параметров хостов вычислительного облака путем анализа и прогноза нагрузки вычислительного облака посредством модифицированной модели искусственных нейронных сетей Элмана с вейвлет-функцией активации и обучением при помощи искусственных иммунных систем на основе исторических данных [патент РФ № 2609076 опубл. 30.01.2017, G06F 9/00], сформированных при кластеризации методом нечетких C-средних (второй этап формирования модели);
– на фиг. 5 описывается последовательность выполнения операций при минимизации неравномерности использования нагрузки на основе ситуационного поиска решений (третий этап формирования модели);
– на фиг. 6 приведена последовательность операций запроса ресурсов для вычислительного облака у имеющихся источников с целью запуска всех экземпляров (четвертый этап формирования модели).
Способ управления распределением ресурсов в распределенных информационно-вычислительных средах осуществляется следующим образом.
Модель использования и перераспределения ресурсов в облачных вычислительных средах – в вычислительном облаке формируют (фиг. 1) в виде модели IaaS с использованием концепции интеллектуальных алгоритмов, последовательно выполняя совокупность операций, включающую четыре основных этапа (фиг. 2).
На первом этапе в вычислительном облаке выделяют ресурсы запускаемому экземпляру. При этом на первом этапе формирования модели IaaS выбирают (фиг. 3) наилучший адекватный хост для размещения экземпляра приложения в вычислительном облаке на основе анализа иерархий [патент РФ № 2609076 опубл. 30.01.2017, G06F 9/00], для чего могут быть использованы основные положения Метода анализа иерархий [Саати Т. Принятие решений. Метод анализа иерархий. - М.: Радио и связь, 1993. - 320 с.]. Также на данном этапе ведется учет поступления ресурсов от источников, каждый из которых характеризуется индексом поступления ресурсов, дополнительно учитываемый в модели, который задается как отношение поступивших ресурсов к запрошенным у источника.
На втором этапе прогноз динамических параметров функционирования хостов вычислительного облака [Цирель С. В. Предсказание и прогноз // История и Математика: Концептуальное пространство и направления поиска. М.: УРСС, 2007.] проводят путем анализа и прогноза нагрузки вычислительного облака посредством модифицированной модели искусственных нейронных сетей Элмана [Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence: journal. — 2009. — Vol. 31, no. 5.] с вейвлет-функцией активации и обучением при помощи искусственных иммунных систем на основе исторических данных, сформированных при кластеризации методом нечетких C-средних [Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. — 1981.]. При этом могут быть использованы модифицированные искусственные нейронные сети Элмана (Elman), аналогичные искусственным нейронным сетям, рассмотренным в [Назаров А.В., Лоскутов А.И. Нейросетевые алгоритмы прогнозирования и оптимизации систем. - СПб.: Наука и техника, 2003. - 384 с.], с вейвлет-функцией активации и обучением (настройкой) [US 5444619, 22.08.1995, US 2009119018 A1, 07.05.2009] при помощи искусственных иммунных систем (например, посредством алгоритма AIS-WELman) на основе исторических данных, сформированных при кластеризации (группировании) методом нечетких C-средних (fuzzy с-means - FCM), рассмотренных, например, в Трудах 4-й Международной конференции по Облачным вычислениям в 2013 г. [CLOUD COMPUTING 2013: The Fourth International Conference on Cloud Computing, GRIDS, and Virtualization // Fuzzy Subtractive Clustering Based Prediction Approach for CPU]. На данном этапе учтено поступление ресурсов от источников. Поступившие ресурсы расширяют вычислительное облако и служат для создания экземпляров приложения в вычислительном облаке. Дополнительно проводится учет необходимых ресурсов для функционирующих экземпляров, а также недостающих ресурсов, которые необходимы для экземпляров, в которых имеется потребность.
На третьем этапе (фиг. 5) динамическое перераспределение ресурсов между экземплярами приложений вычислительного облака выполняют путем минимизации неравномерности использования нагрузки на основе моделей ситуационного поиска решений, описанных в [патент РФ № 2609076 опубл. 30.01.2017, G06F 9/00], [Саати Т. Принятие решений. Метод анализа иерархий. - М.: Радио и связь, 1993. - 320 с., [электронный ресурс] URL: http://docs.openstack.org/trunk/openstack-compute/admin/ch_schedulmg.html (OpenStack Compute Administration Guid)]. В случае нехватки ресурсов для отдельных экземпляров приложений в вычислительном облаке переходим к четвертому этапу.
На четвертом этапе, в случае нехватки ресурсов для размещения всех экземпляров приложений в вычислительном облаке, производится запрос необходимых ресурсов у источников с более высоким индексом поступления ресурсов. Индекс поступления ресурсов
Таким образом, при выполнении предложенного нового способа получают технический результат – снижение времени развертывания экземпляров приложений информационно-вычислительной системы в вычислительном облаке (распределенной информационно-вычислительной среде), за счет повышения интеллектуальности управления поступлением ресурсов от разнородных источников.
Результаты опытного применения показывают, что дополнительный учет характеристик источников предоставления ресурсов позволяет снизить время развертывания экземпляров приложений (или снизить время развертывания нового ИТ-сервиса или уменьшить время обработки заявки на внедрение нового ИТ-сервиса в организации на 10-25 %).
Разработанный способ также может быть применен для распределения ресурсов другого вида (не только центрального процессора, оперативной памяти, дисковых ресурсов, сетевых ресурсов), а может применяться также для распределения ресурсов (аппаратное и программное обеспечение, ресурс сопровождения и администрирования) необходимых для создания ИТ-сервисов организации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И СИСТЕМА ИНТЕЛЛЕКТУАЛЬНОГО УПРАВЛЕНИЯ РАСПРЕДЕЛЕНИЕМ РЕСУРСОВ В ОБЛАЧНЫХ ВЫЧИСЛИТЕЛЬНЫХ СРЕДАХ | 2015 |
|
RU2609076C2 |
СПОСОБ ДЛЯ РАЗМЕЩЕНИЯ РАБОЧИХ НАГРУЗОК В ПРОГРАММНО-ОПРЕДЕЛЯЕМОЙ АВТОМАТИЗИРОВАННОЙ СИСТЕМЕ | 2016 |
|
RU2730534C2 |
МЕЖ-ОБЛАЧНОЕ УПРАВЛЕНИЕ И УСТРАНЕНИЕ НЕПОЛАДОК | 2012 |
|
RU2604519C2 |
ЦЕНТРАЛИЗОВАННОЕ УПРАВЛЕНИЕ ПРОГРАММНО-ОПРЕДЕЛЯЕМОЙ АВТОМАТИЗИРОВАННОЙ СИСТЕМОЙ | 2016 |
|
RU2747966C2 |
ПРОГРАММНО-ОПРЕДЕЛЯЕМАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА И АРХИТЕКТУРА | 2016 |
|
RU2729885C2 |
СИСТЕМА И СПОСОБ ВИРТУАЛИЗАЦИИ ФУНКЦИИ МОБИЛЬНОЙ СЕТИ | 2014 |
|
RU2643451C2 |
ОБЛАЧНО-ГРАНИЧНЫЕ ТОПОЛОГИИ | 2012 |
|
RU2628208C2 |
МЕХАНИЗМ КООРДИНАЦИИ ДЛЯ ВЫБОРА ОБЛАКА | 2012 |
|
RU2628902C2 |
СПОСОБ И СИСТЕМА ДЛЯ ПРЕДОСТАВЛЕНИЯ ПРОКСИ-УСЛУГИ В ПРОМЫШЛЕННОЙ СИСТЕМЕ | 2017 |
|
RU2744562C2 |
Способ обработки данных пользователя | 2022 |
|
RU2785555C1 |
Изобретение относится к вычислительной технике, информационно-вычислительным сетям и средам, к обработке данных и может быть использовано в процессах управления требованиями к источникам вычислительных и других ресурсов и их распределению в распределенных информационно-вычислительных средах. Техническим результатом является снижение времени ввода в эксплуатацию экземпляров приложений информационно-вычислительной системы в вычислительном облаке (распределенной информационно-вычислительной среде), за счет увеличения ресурсов вычислительного облака посредством повышения интеллектуальности управления поступлением ресурсов от разнородных источников. Технический результат достигается за счет дополнения следующих операций при формировании модели управления требованиями и распределением ресурсов учетом поступления ресурсов от источников, каждый из которых характеризуется индексом поступления ресурсов, дополнительно учитываемым в модели; учетом необходимых ресурсов для функционирующих экземпляров, а также недостающих ресурсов; этапом запроса необходимых ресурсов у источников с более высоким индексом поступления ресурсов с целью получения недостающих ресурсов. За счет дополнительного учета характеристик источников при запросе дополнительных ресурсов позволяет снизить время на ввод экземпляров приложений. 6 ил.
Способ управления распределением ресурсов в распределенных информационно-вычислительных средах, заключающийся в том, что посредством компьютера формируют модель требования, использования и перераспределения ресурсов, формируют с использованием концепции интеллектуальных алгоритмов, последовательно выполняя совокупность операций, включающую три основных этапа: на первом этапе в вычислительном облаке выделяют ресурсы запускаемому экземпляру приложения, на втором этапе проводят прогноз динамических параметров функционирования хостов (серверов) вычислительного облака, на третьем этапе осуществляют динамическое перераспределение ресурсов между экземплярами вычислительного облака, при этом на первом этапе формирования модели выбирают наилучший адекватный хост для размещения экземпляра приложения в вычислительном облаке на основе анализа иерархий, на втором этапе прогноз динамических параметров функционирования хостов вычислительного облака проводят путем анализа и прогноза нагрузки вычислительного облака посредством модифицированной модели искусственных нейронных сетей Элмана с вейвлет-функцией активации и обучением при помощи искусственных иммунных систем на основе исторических данных, сформированных при кластеризации методом нечетких c-средних, на третьем этапе динамическое перераспределение ресурсов между экземплярами приложений вычислительного облака выполняют путем минимизации неравномерности использования нагрузки на основе ситуационного поиска решений, отличающийся тем, что на первом этапе дополнительно производится оценка поступления ресурсов от источников, каждый источник характеризуется индексом поступления ресурсов, который задается как отношение поступивших ресурсов к запрошенным у источника, на втором этапе дополнительно учитываются необходимые ресурсы для функционирующих экземпляров приложений, а также резервируются дополнительные ресурсы, которые необходимы для экземпляров, в которых имеется потребность, наличием четвертого этапа, на котором запрашивают необходимые ресурсы у источников с более высоким индексом поступления ресурсов с целью получения недостающих ресурсов и последующего динамического распределения между экземплярами приложений.
СПОСОБ И СИСТЕМА ИНТЕЛЛЕКТУАЛЬНОГО УПРАВЛЕНИЯ РАСПРЕДЕЛЕНИЕМ РЕСУРСОВ В ОБЛАЧНЫХ ВЫЧИСЛИТЕЛЬНЫХ СРЕДАХ | 2015 |
|
RU2609076C2 |
СИСТЕМА РАСПРЕДЕЛЕНИЯ РЕСУРСОВ | 2000 |
|
RU2189073C2 |
Аппаратно-вычислительный комплекс виртуализации и управления ресурсами в среде облачных вычислений | 2017 |
|
RU2665246C1 |
АППАРАТНО-ВЫЧИЛИСТЕЛЬНЫЙ КОМПЛЕКС ВИРТУАЛИЗАЦИИ И УПРАВЛЕНИЯ РЕСУРСАМИ В СРЕДЕ ОБЛАЧНЫХ ВЫЧИСЛЕНИЙ | 2013 |
|
RU2543962C2 |
CN 108694090 A, 23.10.2018 | |||
CN 103699440 A, 02.04.2014. |
Авторы
Даты
2020-08-05—Публикация
2019-12-25—Подача