УНИВЕРСАЛЬНЫЙ КАТАЛИЗАТОР ГОРЕНИЯ БАЛЛИСТИТНЫХ ТВЕРДЫХ РАКЕТНЫХ ТОПЛИВ (БТРТ) Российский патент 2020 года по МПК C06B25/24 B82B3/00 C06B25/26 

Описание патента на изобретение RU2731103C1

Данное изобретение относится к области разработки баллиститных ракетных твердых топлив (БРТТ) с улучшенными баллистическими характеристиками.

Изобретение относится к разработке высокоэффективного катализатора горения БТРТ для повышения возможности регулирования величины скорости горения (U) БТРТ и снижения зависимости ее от давления в широком его диапазоне 1-40 МПа и от начальной температуры заряда (Т0).

Для регулирования баллистических характеристик было предложено использовать катализаторы совместно с углеродом (сажей) [1-4].

В качестве наиболее близкого аналога (прототипа) принят катализатор, использованный в составе топлива, предложенного в патенте [5]. Он состоит из свинцовой и медной солей салициловой, фталевой кислоты либо их смесей с никелевой солью салициловой, фталевой или других кислот в сочетании с углеродом в виде сажи, наиболее эффективной в плане катализа горения является сажа марки КГО-250 [6].

Предложенный в [5] катализатор обладает высокой эффективностью действия, что позволяет получать топлива с повышенной энергетикой (3978 - 4815 кДж/кг) с различной скоростью горения (например, 10,5-32 мм/с при давлении 10 МПа), с низким значением ν=0,1-0,2 в различном интервале давления. Однако, из [5] не ясно, можно ли с помощью предложенного в нем катализатора эффективно влиять на скорость горения топлив с более высокой энергетикой, а также на горение низкокалорийных (низкотемпературных) составов для газогенераторов.

С 90-х годов в нашей стране не выпускается высокодисперсный углерод КГО-250, а как показали наши исследования другие ее марки значительно менее эффективны [6].

Технической задачей изобретения является разработка универсального высокоэффективного катализатора горения баллиститных топлив различного состава и калорийности для существенного (до 3-10 раз) увеличения скорости горения и уменьшения зависимости ее от давления и от начальной температуры заряда в различном интервале давления.

Поставленная задача достигается тем, что различные катализаторы вводятся в топливо в сочетании с углеродными нанотрубками (УНТ) марки Таунит-МД (Т-МД) в различном их соотношении.

Предлагаемый катализатор расширяет возможности регулирования величины скорости горения и уменьшения зависимости ее от давления в различном интервале давления топлив.

Изготовление образцов топлива осуществляется по принятой для баллиститных топлив технологии: смешение всех компонентов проводится в водной среде при модуле 1:6-1:10, сначала при температуре 20°С, а затем при 50°С с последующим отжимом топливной массы до влажности 15-25 мас. % и вальцеванием ее при температуре 70-90°С, сушкой полуфабриката до влажности 0,5-1,0 мас. % и прессованием изделий (зарядов) на гидравлическом прессе при температуре 80-95°С и давлении до 30 МПа.

Катализатор с УНТ или сажей вводится в состав топлива за счет пропорционального уменьшения всех компонентов. Состав базовых топлив приведен в таблице 1. Основные свойства топлив с предлагаемым катализатором представлены в таблицах 2-13.

Скорость горения определяется в приборе постоянного давления (ППД). Эффективность влияния катализаторов оценивали величиной Zτ=Uk/U0, где Uk - скорость горения топлива с катализатором, U0 - скорость горения базового топлива, τ - значение давления (МПа), для которого вычислено значение Z.

От прототипа предлагаемый катализатор отличается тем, что в комбинированном катализаторе вместо углерода используются УНТ. Особенности УНТ по сравнению с сажей заключаются в том, что они сами более значительно, чем сажа, увеличивают скорость горения топлив различного состава (табл. 2-3). Так, 1,5% УНТ увеличивают скорость горения низкокалорийного топлива 2 в 2 раза при давлении 2 МПа, снижая значение v от 0,83 до 0,60; в случае высококалорийного топлива 4 скорость горения увеличивается в 1,8 раза и значение v снижается от 0,76 до 0,58. В результате этого существенно увеличивается эффективность влияния предлагаемых катализаторов.

В таблице 4 приведены результаты по влиянию на скорость горения низкокалорийного (Qж=2181 кДж/кг) топлива одних и тех же катализаторов (салицилаты меди (СМ) и никеля (СН)) в сочетании с УНТ и с сажей УМ-76, для сравнения. Видно, что катализаторы с УНТ оказывают большее влияние на скорость горения этого состава, чем с сажей. Так, при давлении 2 и 10 МПа СН с УНТ увеличивают скорость горения в 7,2 раза, и в 3,7 раза совместно с салицилатом меди, снижая значение v почти в 2 раза (от 0,86 до 0,47) в интервале давления от 1 до 15 МПа. Ввод сажи приводит к увеличению скорости горения в 3,7 и 1,6 раза, соответственно.

В таблице 5-7 приведены результаты по влиянию на скорость горения низкокалорийного (Qж=2518 кДж/кг) топлива предлагаемого катализатора с Т-МД и, для сравнения, данные для тех же катализаторов с сажей УМ-76. При добавлении 1,5% углеродных нанотрубок к 3% салицилата никеля скорость горения увеличивается в 5,2 раза при давлении 2 МПа, показатель степени v при этом равен 0,52. С увеличением содержания катализатора до 6% и Т-МД до 2% значение v снижается до 0,44. Исследования в области высокого давления показали, что участок «плато» для катализатора с 1,5% Т-МД имеется в интервале давления 15-30 МПа (v=0,04).

Ввод неорганической соли - карбоната никеля не приводит к увеличению скорости горения. Добавление 1,5% сажи оказывает незначительное влияние на скорость горения, при этом значение v равно 1,18. Ввод 1,5% Т-МД оказывает значительное влияние на эффективность действия NiCO3 - скорость горения увеличивается в 4,4 раза (при 2 МПа) и в

2,6 раза (при 10 МПа), значение ν снижается до 0,54 в интервале 1-8 МПа и до 0,35 при давлении выше 8 МПа.

1,5% Т-МД более эффективно влияют на предлагаемый катализатор топлива средней калорийности (топливо 3, Qж=3765 кДж/кг), увеличивая скорость горения в 2,8-2,4 в интервале давления 2-10 МПа (таблица 8). Сажа в количестве 1,5% увеличивает скорость горения лишь в 1,2-1,4 раза в том же интервале давления.

В таблицах 9-10 приведены данные по влиянию углеродных нанотрубок (1-2,5%) на салицилаты меди и никеля. Наибольшая эффективность достигается при вводе 6% комбинированного катализатора (салицилат меди + салицилат никеля) в сочетании с 2% Т-МД: значение ν снижается до 0,38 в интервале давления 1-15 МПа, скорость горения увеличивается более чем в 5 раз при давлении 2 МПа и ~ в 3 раза при давлении 10 МПа. Аналогичный ввод сажи вместо Т-МД оказывает значительно меньшее влияние на закономерности горения топлива 4.

В таблице 11 приведено сравнение действия отечественных УНТ марок «Таунит-М» (Т-М) и «Таунит-МД» на предполагаемый катализатор горения топлив различной энергетики. Наибольшая эффективность достигается при действии на низкокалорийное топливо, при горении которого возможности образования углеродного каркаса на поверхности наиболее благоприятные [7]. Т-МД более эффективно действуют на катализатор, чем Т-М, значительнее увеличивая скорость горения топлив различной энергетики.

В таблице 12 приведены результаты по влиянию катализатора совместно с сажей и Т-МД на скорость горения топлива 4, содержащего в своем 5% металлического горючего ПАМ-4 и 1% модификатора фторопласт-4. Углеродные нанотрубки оказывают большее влияние на действие катализатора, снижая показатель степени ν до 0,35 (при использовании сажи - 0,40), и более значительно увеличивая скорость горения.

В таблице 13 приведены результаты по действию фталата меди-свинца в сочетании с углеродными нанотрубками на скорость горения топлива 4, содержащего в своем составе 20% взрывчатого вещества (ВВ). Ввод 20% ВВ приводит к снижению скорости горения на 30% во всем интервале изученного давления. Ввод катализатора вместе с Т-МД увеличивает скорость горения при 2 МПа в 2,9 раза, а при 10 МПа - в 1,8 раза. Показатель степени в законе горения v снижает от 0,76-0,79 до 0,40.

В таблице 14 приведены скорости термического разложения топлива 4 с 2,5% сажи и Т-МД, а также с катализатором и Т-МД при температуре 120°С. Отношение скорости разложения топлива с добавками к скорости разложения базового топлива выражается величиной Y=Wдоб/W0. Для всех добавок рассчитанная степень разложения η=1-е-кτ при 20°С за 20 лет не превышает 0,02%.

Составы с катализатором обладают достаточными технологическими характеристиками (таблица 15) - коэффициент технологичности Кт=σсрμ в интервале температур 60-80°С для образца с 5% катализатора с 2% Т-МД равен 3,3-3,5; а с 6% катализатора с 2% Т-МД равен 2,9-3,0, т.е. показывает возможность переработки проходным прессованием.

Нитроцеллюлоза 36,8-52,8 Нитроглицерин 13,1-55,2 Динитротолуол 0-18,3 Дибутилфталат 0-6,1 Централит №2 или дифениламин до 1,9 Индустриальное масло до 0,9 Катализатор индивидуальный или смесь катализаторов 1-6 Углеродные нанотрубки 1-2

Список литературы

1 Денисюк А.П., Козырева Т.М., Хубаев В.Г. О влиянии соотношения между PbO и сажей на скорость горения баллиститного пороха // Физика горения и взрыва. 1975. Т. 11. №2. С. 315-318.

2 Денисюк А.П., Марголин А.Д., Токарев Н.П., Хубаев В.Г., Демидова Л.А. Роль сажи при горении баллиститных порохов со свинец содержащими катализаторами // Физика горения и взрыва. 1977. Т. 13. №4. С. 576-584.

3 Pat. US №3033717, Gas producing charge / Preckel Ralph.F. 08.05.1962.

4 Е.Ф. Жегров, Ю.М. Милехин, E.B. Берковская, Химия и технология баллиститных порохов, твердых ракетных и специальных топлив. Т. 1. Химия: Монография - М. РИЦ МГУП им. И. Федорова, 2011. - 400 с.

5 RU 2169722 Рос. Федерация. Баллиститное ракетное твердое топливо / Жегров Е.Ф., Михайлова М.И., Гаврилова Л.А. [и др.]; патентообладатель ФЦДТ "Союз" - №99109175/02; заявл. 28.04.1999, опубл. 27.06.2001.

6 Денисюк А.П., Шепелев Ю.Г., Телепченков В.Е., Киселев И.А., Сизов В.А. Эффективные катализаторы горения для высокоэнергетических баллиститных ТРТ // Боеприпасы и спецхимия. 2013. №3. С. 145-148.

7 Денисюк А.П., Демидова Л.А. Особенности влияния некоторых катализаторов на горение баллиститных порохов // Физика горения и взрыва. 2004. Т. 40. №3. С. 69-76.

Похожие патенты RU2731103C1

название год авторы номер документа
Топливо на основе нитрата аммония с низкой чувствительностью к удару и экологически чистыми продуктами горения 2022
  • Денисюк Анатолий Петрович
  • Гулаков Михаил Юрьевич
  • Аверьянов Артем Андреевич
  • Сизов Владимир Александрович
  • Сидорова Полина Геннадьевна
RU2797695C1
БАЛЛИСТИТНОЕ РАКЕТНОЕ ТВЕРДОЕ ТОПЛИВО 1999
  • Жегров Е.Ф.
  • Михайлова М.И.
  • Гаврилова Л.А.
  • Иваньков Л.Д.
  • Агафонов Д.П.
  • Телепченков В.Е.
  • Вотяков А.Г.
RU2169722C2
БАЛЛИСТИТНОЕ ТОПЛИВО 2003
  • Жегров Е.Ф.
  • Телепченков В.Е.
  • Бакулина Н.И.
  • Дороничев А.И.
  • Агафонов Д.П.
  • Беляева Е.Л.
RU2247700C2
БАЛЛИСТИТНОЕ ТОПЛИВО 2000
  • Жегров Е.Ф.
  • Телепченков В.Е.
  • Бакулина Н.И.
  • Волкова Н.И.
  • Беляева Е.Л.
  • Агафонов Д.П.
RU2179165C2
Аэрозолеобразующее топливо 2018
  • Колпаков Владимир Петрович
  • Денисюк Анатолий Петрович
  • Шепелев Юрий Германович
  • Михалев Дмитрий Борисович
  • Сизов Владимир Александрович
RU2691353C1
СПОСОБ РЕГУЛИРОВАНИЯ СКОРОСТИ ГОРЕНИЯ ОКТОГЕНА 2010
  • Муравьев Никита Вадимович
  • Пивкина Алевтина Николаевна
  • Фролов Юрий Васильевич
  • Моногаров Константин Александрович
  • Мееров Дмитрий Борисович
  • Орджоникидзе Ольга Сергеевна
  • Фоменков Игорь Владимирович
RU2441863C1
КОМПОЗИТ НА ОСНОВЕ АЛЮМОСИЛИКАТНОЙ СТЕКЛОКЕРАМИКИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2013
  • Орлова Людмила Алексеевна
  • Чайникова Анна Сергеевна
  • Винокуров Евгений Геннадьевич
  • Попович Наталья Васильевна
RU2534229C2
БАЛЛИСТИТНОЕ ТОПЛИВО 2001
  • Ибрагимов Н.Г.
  • Печенкина М.А.
  • Козьяков А.В.
  • Лопатенко А.А.
  • Талалаев А.П.
  • Охрименко Э.Ф.
  • Кузьмицкий Г.Э.
  • Аликин В.Н.
RU2189371C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Файков Павел Петрович
  • Зараменских Ксения Сергеевна
  • Попова Нелля Александровна
  • Федосова Наталья Алексеевна
  • Жариков Евгений Васильевич
  • Кольцова Элеонора Моисеевна
RU2517146C2
БАЛЛИСТИТНОЕ ТОПЛИВО 2000
  • Жегров Е.Ф.
  • Бакулина Н.И.
  • Телепченков В.Е.
  • Агафонов Д.П.
RU2175957C1

Реферат патента 2020 года УНИВЕРСАЛЬНЫЙ КАТАЛИЗАТОР ГОРЕНИЯ БАЛЛИСТИТНЫХ ТВЕРДЫХ РАКЕТНЫХ ТОПЛИВ (БТРТ)

Данное изобретение относится к области разработки баллиститных ракетных твердых топлив (БРТТ) с улучшенными баллистическими характеристиками. Изобретение касается универсального катализатора горения баллиститных твердых ракетных топлив, содержащего индивидуальные катализаторы, например карбонат никеля, салицилат никеля, салицилат меди или их смеси, или фталат меди-свинца в сочетании с углеродными нанотрубками марки Таунит-МД (Т-МД) при соотношении индивидуального катализатора или смеси катализаторов и углеродных нанотрубок от 1:1 до 4:1. Технический результат - создание баллиститных топлив различного назначения с увеличенной в 3-10 скоростью горения и уменьшенной зависимостью ее от давления и начальной температуры заряда в широком интервале давлений. 15 табл.

Формула изобретения RU 2 731 103 C1

Универсальный катализатор горения баллиститных твердых ракетных топлив, содержащий индивидуальные катализаторы, например карбонат никеля, салицилат никеля, салицилат меди или их смеси, или фталат меди-свинца в сочетании с углеродными нанотрубками марки Таунит-МД (Т-МД) при соотношении индивидуального или смеси катализаторов и углеродных нанотрубок от 1:1 до 4:1.

Документы, цитированные в отчете о поиске Патент 2020 года RU2731103C1

В.А
Киричко, В.А
Сизов, А.П
Денисюк
Влияние углеродных нанотрубок на эффективность действия катализаторов горения низкокалорийного пороха
Успехи в химии и химической технологии
ТОМ XXX
Токарный резец 1924
  • Г. Клопшток
SU2016A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
A
P
Denisyuk, Academician Y
M
Milekhin, L
A
Demidova, and V
A
Sizov, Effect of Carbon Nanotubes on the Catalysis of Propellant

RU 2 731 103 C1

Авторы

Милёхин Юрий Михайлович

Денисюк Анатолий Петрович

Василевская Наталья Ивановна

Шепелев Юрий Германович

Банзула Юрий Борисович

Малкова Наталья Владимировна

Орлов Юрий Николаевич

Сизов Владимир Александрович

Куликова Дарья Денисовна

Ткачёв Алексей Григорьевич

Даты

2020-08-28Публикация

2019-06-05Подача