ГОРЕЛОЧНОЕ УСТРОЙСТВО ДЛЯ ПОДОГРЕВА ГАЗООБРАЗНОГО ПОТОКА Российский патент 2020 года по МПК F23D14/66 F02K3/08 

Описание патента на изобретение RU2733566C1

Изобретение относится к области теплоэнергетики и газотурбостроения, в частности к горелочным устройствам для подогрева, например, воздуха, перед различного рода теплообменниками в технологических производственных процессах, или для подогрева выхлопных газов газотурбинных установок перед их подачей в котел-утилизатор парогазовой установки.

Одними из основных требований, предъявляемых к подобным горелочным устройствам, являются следующие:

- равномерность температурных полей в поперечном сечении подогреваемого потока за горелочным устройством, т.к., чем равномернее температурные поля перед теплообменником или котлом-утилизатором, тем выше их КПД;

- обеспечение минимальных градиентов температур вдоль стенок канала от горелочного устройства до теплообменника для исключения перегрева и прогара стенок.

Кроме того, что указанные требования сами по себе достаточно трудно выполнимы, они еще и противоречат друг другу, потому что для исключения перегрева стенок необходимо снижать температуру периферийных (пристеночных) слоев потока, при этом требуемая средняя температура потока обеспечивается за счет дополнительного подогрева его прицентральных областей, что неизбежно ухудшает равномерность температурных полей.

Из теории горения известно, что скорость горения имеет экспоненциальную зависимость от температуры смеси горючего и окислителя, «Основы теории горения», учебное пособие, А.В. Талантов -

Казанский Авиационный институт, 1975 г. Кроме того известно, что длина факела горения за любым горелочным устройством обратно пропорциональна скорости горения, т.е., чем холоднее смесь горючего и окислителя, тем дольше на большей длине и более вяло будет проистекать процесс выгорания топлива, и напротив, чем горячее смесь, тем интенсивнее, быстрее и на меньшей длине будет выгорать смесь. Известно также, что конечная температура продуктов сгорания за горелочным модулем не зависит от скорости горения, а зависит от начальной температуры смеси и концентрации топлива в окислителе.

Как следует из многочисленных исследований процессов горения равномерность температурных полей за горелочным устройством, при прочих равных условиях, зависит от равномерности концентрации топлива в поперечном сечении перед фронтом горения и равномерности поля температур на входе в горелочное устройство. Однако, поле температур на входе в горелочное устройство, как правило, не является равномерным, особенно, если речь идет о поле выхлопного потока газовой турбины, где неравномерность температур на выходе из сопла газовой турбины может достигать 200°C и более. Кроме температурной неравномерности, в выхлопных газах ярко выражена неравномерность концентрации окислителя (кислорода), что с учетом индивидуальных особенностей каждой газовой турбины, требует соответствующих - индивидуальных мер для получения ровного поля температур.

Известно горелочное устройство для подогрева выхлопных газов газовых турбин (SU №694652, МПК F02K 3/10, опубл. 30.10.1979), содержащее решетку стабилизаторов пламени, каждый из которых снабжен каналом подвода топлива, содержащий топливораздающую трубку, а топливные отверстия в топливораздающей трубке и в топливном канале выполнены несоосными.

Недостатками этого устройства являются отсутствие возможности учета неравномерности поля температур потока на входе в горелочное

устройство для настройки равномерного поля на выходе из горелочного устройства, отсутствие возможности настройки равномерности температурного поля вдоль стабилизатора, низкая надежность из-за высоких градиентов температур стенок канала вследствие совпадения плоскостей максимального тепловыделения факелов горения.

Известно горелочное устройство для подогрева выхлопных газов газовых турбин по патенту (RU №153431, F02K 3/10, F23D 14/74, опубл. 20.07.2015), наиболее близкое по технической сущности и принятое за прототип, расположенное в канале, при этом в устройстве равномерно установлено множество горелочных модулей, разделенных на периферийные и прицентральные горелки, где к каждому модулю по отдельной магистрали подведено топливо хотя бы из одного коллектора.

Недостатками этого устройства являются отсутствие возможности учета неравномерности поля температур потока на входе в горелочное устройство, отсутствие возможности настройки равномерности температурного поля вдоль стабилизатора, низкая надежность из-за высоких градиентов температур стенок канала вследствие совпадения плоскостей максимального тепловыделения факелов горения.

Технической проблемой, решение которой обеспечивается при осуществлении предлагаемого изобретения и не может быть реализовано при использовании прототипа, являются отсутствие возможности учета неравномерности поля температур потока на входе в горелочное устройство, отсутствие возможности настройки равномерности температурных полей в направление вдоль стабилизаторов, низкая надежность стенок канала из-за высоких градиентов температур вдоль стенок канала вследствие совпадения плоскостей максимального тепловыделения огненных факелов.

Технической задачей настоящего изобретения является обеспечение возможности учета неравномерности поля температур потока на входе в горелочное устройство, обеспечение возможности настройки равномерности температурных полей как в вертикальном, так и горизонтальном

направлениях поперечного сечения на выходе из горелочного устройства и снижение градиента температуры стенок канала и повышению его надежности без ухудшения неравномерности температурных полей.

Техническая задача решается тем, что в горелочном устройстве для подогрева газообразного потока, расположенном в канале, равномерно установлено множество горелочных модулей, разделенных на периферийные и прицентральные горелки, где к каждому модулю по отдельной магистрали подведено топливо хотя бы из одного коллектора, согласно изобретению, на входе в каждую отдельную магистраль установлен ограничивающий расход топлива регулируемый жиклер, а магистрали для периферийных и прицентральных горелок выполнены с разной возможной степенью теплообмена топлива с газообразным потоком, в зависимости от удаления горелочных модулей от стенок канала и соотношения температур топлива и газообразного потока.

Кроме того, согласно изобретению, на входе в коллектор установлен съемный блок - теплообменник.

Кроме того, согласно изобретению, установленный на входе коллектора съемный блок - теплообменник выполнен в виде подогревателя топлива.

Кроме того, согласно изобретению, установленный на входе коллектора съемный блок - теплообменник выполнен в виде охладителя топлива.

В предлагаемом изобретении, в отличии от прототипа, установка в каждой отдельной магистрали регулируемого жиклера позволяет регулировать расход топлива на в ходе в каждую магистраль, что в целом позволяет регулировать температурные поля на выходе из горелочного устройства в том числе и с учетом температурных полей на входе в горелочное устройство.

Выполнение магистралей для периферийных и прицентральных горелок с разной степенью теплообмена топлива с газообразным потоком, в

зависимости от удаления горелочных модулей от стенок канала и соотношения температур топлива и газообразного потока позволяет снизить температурные градиенты вдоль стенок канала и повышению его надежности без ухудшения неравномерности температурного поля.

Выполнение съемного блока на входе в коллектор позволяет регулировать температуру топлива для ее отличия от температуры газообразного потока.

На фиг. 1 - изображены варианты выполнения горелочного устройства в каналах разной формы поперечного сечения, прямоугольного - «а» и круглого «б».

На фиг. 2 - изображено сечение горелочного устройства по горизонтальной оси х.

На фиг. 3 - изображен съемный блок на входе в коллектор горелочного устройства.

На фиг. 4 - изображена работа горелочного устройства с плоскостями максимальных тепловыделений в рядах модулей горелок.

Горелочное устройство 1 для подогрева газообразного потока, расположенное в канале, например, прямоугольного или круглого (фиг. 1) сечения, при этом в устройстве равномерно установлено множество горелочных модулей 2 разной формы и разделенных на периферийные 7 и прицентральные 8 горелки, где к каждому модулю 2 по отдельной магистрали 4 подведено топливо хотя бы из одного коллектора 3. На входе в коллектор может быть установлен съемный блок - теплообменник 6, выполненный в виде подогревателя топлива или охладителя топлива. Подогреватель или охладитель топлива устанавливаются в том случае, когда температура топлива и воздуха близки по значению. На входе в каждую отдельную магистраль 4 установлен ограничивающий расход топлива регулируемый жиклер 5, а магистрали 4 для периферийных 7 и прицентральных 8 горелок выполнены с разной степенью теплообмена топлива с газообразным потоком, в зависимости от удаления горелочных

модулей 2 от стенок канала 9 и соотношения температур топлива и газообразного потока.

Работает горелочное устройство следующим образом.

Для случая, когда температура подогреваемого потока газа выше, чем температура топлива - это типичный случай при подогреве выхлопных газов газовых турбин, имеющих температуру 350…450°C, при температуре топлива 10…50°C, магистрали подвода топлива к периферийным модулям горелок выполняются короткими для снижения степени подогрева топлива потоком нагреваемого газа, а также могут быть теплоизолированы, для практически полного исключения подогрева. Магистрали прицентральных модулей горелок выполняются разной длины, чем дальше от стенок канала, тем длиннее магистраль, соответственно, тем выше степень подогрева топлива, а также магистрали могут быть оребрены для наивысшей степени подогрева.

Для случая, когда температура топлива выше температуры подогреваемого потока, магистрали периферийных модулей горелок выполняются подлиннее и могут быть оребрены для повышения степени охлаждения топлива, а магистрали прицентровых модулей выполняются разной длины с разной степенью теплоизоляции, см. фиг. 4, правая относительно оси часть.

Для случая, когда температура топлива и подогреваемого потока газа примерно равны, на входе в коллектор горелочного устройства устанавливается съемный блок - теплообменник, в котором топливо подогревается, например, горячими газами, отобранными за горелочным устройством, а магистрали подвода топлива к модулям выполняют в соответствии со случаем, когда температура подогреваемого потока газа выше, чем температура топлива. Или устанавливается съемный блок - теплообменник, в котором топливо охлаждается, например, водой отобранной перед котлом утилизатором, а магистрали подвода топлива выполняются в соответствии со случаем, когда температура подогреваемого

потока газа выше температуры топлива. Энергия, переданная топливу в съемном блоке - теплообменнике возвращается в цикл установки и поэтому не является утраченной.

Регулировку температурных полей на входе в каждую отдельную магистраль горелочного устройства производят путем регулирования расхода топлива регулируемыми жиклерами на входе в каждую магистраль.

Таким образом, обеспечивается подача топлива с низкой температурой в периферийные модули и повышение температуры топлива от ряда к ряду модулей в направление от периферии к центру горелочного устройства. В результате, относительно вялое горение за периферийными горелками в непосредственной близости от стенок канала обеспечит для последних щадящий тепловой режим работы, а возрастающая интенсивность выгорания топлива от ряда к ряду модулей горелок обеспечит разнесение вдоль оси канала плоскостей максимальных тепловыделений факелов горения, что также способствует снижению тепловых градиентов стенок канала и повышению его надежности.

Похожие патенты RU2733566C1

название год авторы номер документа
КОТЕЛ 2023
  • Шаймухаметов Ролан Ришатович
RU2820496C1
МОДУЛЬ ГЕНЕРАЦИИ УЛЬТРА-СВЕРХКРИТИЧЕСКОГО РАБОЧЕГО АГЕНТА 2019
  • Гуйбер Отто
  • Чернов Анатолий Александрович
RU2701008C1
ОБОГРЕВАТЕЛЬ СО ВСТРОЕННЫМ ТЕРМОЭЛЕКТРИЧЕСКИМ ГЕНЕРАТОРОМ 2022
  • Баукин Владимир Евгеньевич
  • Винокуров Александр Викторович
  • Савельев Максим Анатольевич
RU2782078C1
ПОДОГРЕВАТЕЛЬ ЖИДКИХ ИЛИ ГАЗООБРАЗНЫХ СРЕД 2005
  • Смирнов Юрий Александрович
  • Чистик Сергей Михайлович
  • Паршин Сергей Николаевич
  • Киселев Сергей Владимирович
  • Райкевич Александр Иосифович
RU2296921C2
НАГРЕВАТЕЛЬ ОГНЕВОЙ ТРУБНЫЙ АВТОМАТИЗИРОВАННЫЙ 2008
  • Долотовский Владимир Васильевич
  • Куличихин Валерий Михайлович
  • Тетерин Дмитрий Павлович
  • Поршнев Владимир Александрович
  • Жебраков Алексей Сергеевич
RU2378583C1
ПЕРЕДВИЖНОЙ ТЕПЛОГЕНЕРАТОР 2002
  • Алтухов Р.В.
  • Белогубец Ф.А.
  • Дашунин Н.В.
  • Дроздов М.Л.
  • Иванов В.А.
  • Рачук В.С.
  • Сорокин И.Н.
  • Сухов А.И.
  • Шевцов А.П.
  • Чурсинов Д.Н.
RU2216696C1
ПОДОГРЕВАТЕЛЬ ЖИДКИХ ИЛИ ГАЗООБРАЗНЫХ СРЕД 2004
  • Смирнов Юрий Александрович
  • Чистик Сергей Михайлович
  • Паршин Сергей Николаевич
  • Киселев Сергей Владимирович
  • Райкевич Александр Иосифович
RU2270406C2
ГОРЕЛОЧНОЕ УСТРОЙСТВО ФАКЕЛЬНОЙ ТРУБЫ 1994
  • Юсупов Н.Х.
  • Габутдинов М.С.
  • Щукин В.А.
  • Мингазов Б.Г.
  • Черевин В.Ф.
RU2080518C1
ДВУХДИАПАЗОННАЯ МОДУЛЯЦИОННАЯ ГАЗОВАЯ ГОРЕЛКА ПОЛНОГО ПРЕДВАРИТЕЛЬНОГО СМЕШИВАНИЯ 2020
  • Торопов Алексей Леонидович
RU2727117C1
УСТРОЙСТВО, СПОСОБ И КОМПЛЕКС НАГРЕВА ВОЗДУХА 2023
  • Цыцорин Алексей Петрович
  • Попов Денис Валериевич
RU2825792C1

Иллюстрации к изобретению RU 2 733 566 C1

Реферат патента 2020 года ГОРЕЛОЧНОЕ УСТРОЙСТВО ДЛЯ ПОДОГРЕВА ГАЗООБРАЗНОГО ПОТОКА

Изобретение относится к области энергетики. Горелочное устройство для подогрева газообразного потока расположено в канале, при этом в устройстве равномерно установлено множество горелочных модулей, разделенных на периферийные и прицентральные горелки, где к каждому модулю по отдельной магистрали подведено топливо хотя бы из одного коллектора. На входе в каждую отдельную магистраль установлен ограничивающий расход топлива регулируемый жиклер, а магистрали для периферийных и прицентральных горелок выполнены с разной степенью теплообмена топлива с газообразным потоком в зависимости от удаления горелочных модулей от стенок канала и соотношения температур топлива и газообразного потока. На входе в коллектор установлен съемный блок - теплообменник. Установленный на входе коллектора съемный блок - теплообменник выполнен в виде подогревателя топлива. Установленный на входе коллектора съемный блок - теплообменник выполнен в виде охладителя топлива. Изобретение позволяет обеспечить возможность учета неравномерности поля температур потока на входе в горелочное устройство, возможность настройки равномерности температурных полей и снизить градиент температуры стенок канала. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 733 566 C1

1. Горелочное устройство для подогрева газообразного потока, расположенное в канале, при этом в устройстве равномерно установлено множество горелочных модулей, разделенных на периферийные и прицентральные горелки, где к каждому модулю по отдельной магистрали подведено топливо хотя бы из одного коллектора, отличающееся тем, что на входе в каждую отдельную магистраль установлен ограничивающий расход топлива регулируемый жиклер, а магистрали для периферийных и прицентральных горелок выполнены с разной степенью теплообмена топлива с газообразным потоком в зависимости от удаления горелочных модулей от стенок канала и соотношения температур топлива и газообразного потока.

2. Горелочное устройство по п. 1, отличающееся тем, что на входе в коллектор установлен съемный блок - теплообменник.

3. Горелочное устройство по п. 1, отличающееся тем, что установленный на входе коллектора съемный блок - теплообменник выполнен в виде подогревателя топлива.

4. Горелочное устройство по п. 1, отличающееся тем, что установленный на входе коллектора съемный блок - теплообменник выполнен в виде охладителя топлива.

Документы, цитированные в отчете о поиске Патент 2020 года RU2733566C1

0
SU153431A1
Устройство для подогрева выхлопных газов газовой турбины 1978
  • Чернин Хаим Неухович
  • Смирнова Светлана Григорьевна
  • Фивейский Владимир Юрьевич
  • Бодров Игорь Семенович
  • Тумановский Анатолий Григорьевич
  • Измайлов Валерий Афанасьевич
  • Хандобин Валерий Афанасьевич
  • Бутовский Леонид Сергеевич
  • Христич Владимир Александрович
SU694652A1
Устройство для подогрева выхлопных газов газовой турбины 1990
  • Спиридонов Юрий Александрович
  • Тинчурин Фарель Закирович
  • Спиридонов Михаил Юрьевич
  • Спиридонов Александр Юрьевич
SU1813907A1
ТУРБИНА ВНУТРЕННЕГО ГОРЕНИЯ 1930
  • Богданов В.Н.
SU21598A1
DE 102017113308 A1, 20.12.2018.

RU 2 733 566 C1

Авторы

Пеков Ахиллей Периклович

Даты

2020-10-05Публикация

2019-07-01Подача