Во многих крупных населенных пунктах старые не функционирующие свалки твердых бытовых отходов (ТБО) располагаются в границах жилых районов, что недопустимо по существующим санитарно-эпидемиологическим нормам. Передислокация таких свалок должна предусматривать организацию полигона захоронения ТБО в соответствии с законодательством РФ вне жилых поселений, что является технически сложным и дорогостоящим мероприятием.
Известен способ сжигания отходов (Инженерно-технический справочник ИТС 9-2015 по наилучшим доступным технологиям «Обезвреживание отходов термическим способом (сжигание отходов)»), который может быть использован при ликвидации свалки ТБО. К недостаткам способа можно отнести возможные выбросы токсичных газообразных веществ в атмосферу (бензапирен, оксиды углерода, серы, азота, диоксины) и образование зольного остатка 3-4 класса опасности, составляющего от 40% до 80% от массы исходного мусора, который необходимо вывозить на полигон захоронения.
Известны многочисленные способы обустройства свалок ТБО: перевод несанкционированной свалки ТБО в полигон захоронения отходов (патент RU 2697095, кл. В09В 1/00, опубл. 2019), санитарная консервация свалок (Патент RU 2469805, кл. B09 B1/00, опубл. 2012), захоронение обработанных раствором флокулянтов отходов в котловане-могильнике (патент RU 2393310, кл. E04G 23/08, опубл. 2010 г.), который обустраивают рядом с уничтожаемым объектом. Однако эти способы не приводят к изменению состава и объема свалки ТБО и не могут считаться мероприятиями по ликвидации отходов.
Известен способ рекультивации объектов, оказывающих негативное действие на окружающую среду (патент RU 2633397, кл. В09В 3/00, опубл. 2017), взятый нами за прототип, в котором загрязненные строительные материалы и грунт очищаются промыванием подобранным растворителем (выщелачивателем) на специально построенном полигоне с организованной дренажной системой сбора раствора, восстановлением его на станции водоочистки и повторным использованием. Способ эффективен при рекультивации высоко загрязненных промышленных объектов, однако использование его для ликвидации свалки ТБО затруднительно в связи со сложным составом отходов.
Техническим результатом предлагаемого изобретения является полная ликвидация свалки твердых бытовых отходов без вывоза на полигоны захоронения с рекультивацией территории грунтом-рекультивантом, полученным из свалочных масс.
Способ ликвидации свалки твердых бытовых отходов, отличающийся тем, что свалочные массы разделяются методом сухого грохочения по размеру и составу содержимого свалки, выделения мелкодисперсной (менее 10 мм) фракции – свалочного грунта и перевод его в грунт-рекультивант с дальнейшим использованием для рекультивации очищенной от отходов территории, а выделяемые из свалочных масс древесные и полимерные отходы, металлический лом, мусор строительный, лом асфальтовых и асфальтобетонных покрытий направляются на вторичную переработку. Выделяемый свалочный грунт обезвреживается путем обработки нагретым до 80±10ºС воздухом, растворами бишофита (28 г/л) и калиевыми солями гуминовых кислот (0,5 г/л), взятыми в количестве по 3 - 10% от массы обрабатываемого грунта, причем калиевые соли гуминовых кислот получают из низинного торфа с содержанием органических веществ не менее 85% в пересчете на сухую массу при пропускании торфо-щелочной пульпы через ультразвуковой реактор мощностью не менее 3 кВт без нагрева. Получаемый грунт-рекультивант для повышения его биологической активности дополнительно смешивается с осадками сточных вод (ОСВ), обезвреженных при 80±10°С в количестве не более 5 - 15% ОСВ от массы полученного грунта-рекультиванта.
Пример 1. Исследовались образцы грунтов свалки ТБО, закрытой в 1983 году. Отбор проб осуществлялся в 8-ми контрольных точках, на различных глубинах: от (0–0,3) до 10 м. Выбранные контрольные точки характеризуют состояние почв на территории свалки и в ее массе. Фоновая точка характеризует состояние почвы за пределами свалки на глубинах (0–0,05) и (0,05-0,2) м. Всего отобрано 26 проб свалочного грунта и 2 фоновые пробы. Из них методом усреднения получено 8 образцов по контрольным и один – по фоновой точкам, а также один усредненный образец по всем контрольным точкам. Для десяти образцов проведен анализ водных вытяжек методом биотестирования с применением тест-объекта дафнии «Daphnia magna» с целью установления класса опасности воздействия на окружающую среду отхода по токсичности. Исследования проводились согласно ФР.1.39.2007.03222 «Методика определения токсичности воды и водных вытяжек из почв, осадков, сточных вод, отходов по смертности и изменению плодовитости дафний». Критерием оценки токсичности водных вытяжек образцов служит гибель 50% и более дафний за 96 часов экспозиции. Результаты определения класса опасности усредненных образцов представлены в таблице 1.
Таблица 1
Пример 2. Полученные в примере 1 десять мелкодисперсных образцов были обдуты горячим воздухом температурой 80±10 ºС. Для всех полученных мелкодисперсных образцов проведен анализ водных вытяжек методом биотестирования с применением тест-объекта дафнии «Daphnia magna» с целью установления класса опасности воздействия на окружающую среду отхода по токсичности. Результаты определения класса опасности мелкодисперсных усредненных образцов представлены в таблице 2.
Таблица 2
Как следует из представленных в таблице 2 результатов по определению класса опасности мелкодисперсных образцов, прошедших обработку горячим воздухом, токсичность свалочного грунта (относительно данных, представленных в таблице 1) существенно снизилась. Этот факт можно объяснить уничтожением микробиоты кислородом воздуха и снижением подвижности вредных веществ (соединений тяжелых металлов, органических веществ) при аэрации субстрата.
Пример 3. Из усредненной пробы (пример 2) приготовлены восемь образцов, семь из которых смешанны с растворами бишофита и гумата калия, причем калиевые соли гуминовых кислот получены из низинного торфа с содержанием органических веществ 92,6% в пересчете на сухую массу при пропускании торфо-щелочной пульпы через ультразвуковой реактор мощностью 3 кВт без нагрева. Концентрат бишофита (28%) и концентрат гумата калия (32 г/л) приняты за 100%. Из этих товарных концентратов были приготовлены 10% водный слабокислый раствор бишофита (26 г/л) и 1,5% водный слабощелочной раствор гумата калия (0,5 г/л). Результаты определения класса опасности образцов свалочного грунта, обработанных растворами бишофита и гумата калия представлены в таблице 3.
Таблица 3.
Результаты, представленные в таблице 3, доказывают эффективность совместного применения растворов бишофита и гумата калия для снижения токсичности свалочного грунта до пятого класса опасности и, тем самым, перевода его в грунт-рекультивант. Наилучший результат (по критерию класса опасности отхода) получен для образцов 6-8, в которых свалочный грунт обрабатывался водными растворами бишофита (концентрацией 26 г/л) и гумата калия (0,5 г/л), взятыми в количестве по 3-10% от массы грунта. Найденная рецептура позволяет использовать модифицированный свалочный грунт для целей рекультивации, т.е. в качестве грунта-рекультиванта.
Пример 4. Повышение биологической активности грунта-рекультиванта с использованием осадков сточных вод (ОСВ) городского водоканала. Образцы ОСВ содержали органического вещества 62%, имели влажность 76% и были термообработаны при температуре 80°С для уничтожения патогенной микрофлоры. Биологическую активность модифицированных образцов грунта-рекультиванта определяли по ГОСТ 13038-84 «Метод определения всхожести». В качестве объекта были выбраны семена мягкой пшеницы. Контрольная среда в растильне — песок с размером частиц 0,4—0,8 мм (образец Контроль П). Второй контрольный образец – почвогрунт с фоновой точки (Контроль Ф). Образец исходного грунта-рекультиванта – образец 6 (Обр6) из Примера 3. Грунт-рекультивант модифицировали добавлением 5% ОСВ (образец Обр6+ОСВ5), 10% ОСВ (образец Обр6+ОСВ10), 15% ОСВ (образец Обр6+ОСВ15) и 20% ОСВ (образец Обр6+ОСВ20). Семена проращивали на образцах влажностью 60%. Результаты оценки биологической активности и класса опасности полученных образцов приведены в таблице 4.
Таблица 4.
Представленные в таблице 4 результаты свидетельствуют о положительном влиянии добавки ОСВ в количестве от 5% до 15% к грунту-рекультиванту, но большая концентрация ОСВ приводит к изменению класса опасности воздействия на окружающую среду с 5 на 4, что недопустимо.
Во многих крупных населенных пунктах старые не функционирующие свалки твердых бытовых отходов (ТБО) располагаются в границах жилых районов, что недопустимо по существующим санитарно-эпидемиологическим нормам. Передислокация таких свалок должна предусматривать организацию полигона захоронения ТБО в соответствии с законодательством РФ вне жилых поселений, что является дорогостоящим мероприятием. Способ ликвидации свалки ТБО предусматривает разделение свалочных масс методом сухого грохочения по размеру и составу содержимого свалки, выделения мелкодисперсной фракции – свалочного грунта, который может составлять до 70% от массы всех захороненных отходов, и перевод его в грунт-рекультивант с дальнейшим использованием для рекультивации очищенной от ТБО территории, а выделяемые из свалочных масс древесные и полимерные отходы, металлический лом, мусор строительный, лом асфальтовых и асфальтобетонных покрытий направляются на вторичную переработку. Обезвреживание мелкодисперсной фракции ведут обработкой нагретым до 80±10°С воздухом и водными растворами бишофита концентрацией 26 г/л и калиевых солей гуминовых кислот концентрацией 0,5 г/л. Количество растворов составляет 3-10% каждого от массы обрабатываемого грунта. Техническим результатом предлагаемого изобретения является полная ликвидация существующей свалки и рекультивация загрязненной территории. 3 з.п. ф-лы, 4 табл., 4 пр.
1. Способ ликвидации свалки твердых бытовых отходов, включающий разделение свалочной массы на мелкодисперсную фракцию и прочие отходы, с последующим обезвреживанием выделенной мелкодисперсной фракции с получением грунта-рекультиванта, при этом обезвреживание ведут обработкой нагретым до 80±10°С воздухом и водными растворами бишофита концентрацией 26 г/л и калиевых солей гуминовых кислот концентрацией 0,5 г/л, количество растворов составляет 3-10% каждого от массы обрабатываемого грунта, прочие отходы направляют на вторичную переработку, а полученный грунт-рекультивант используют для рекультивации очищенной от отходов территории.
2. Способ по п.1, в котором полученный грунт-рекультивант дополнительно смешивают с предварительно термообработанными при температуре 80±10°С воздухом осадками сточных вод в количестве 5-15% от массы грунта-рекультиванта.
3. Способ по п.1 или 2, в котором калиевые соли гуминовых кислот получены из низинного торфа с содержанием органических веществ не менее 85% в пересчете на сухую массу с дополнительным пропусканием торфо-щелочной пульпы через ультразвуковой реактор мощностью не менее 3 кВт без нагрева.
4. Способ по п.1 или 2, в котором выделенная мелкодисперсная фракция имеет размер частиц менее 10 мм.
Способ рекультивации объектов, оказывающих негативное действие на окружающую среду | 2017 |
|
RU2633397C1 |
СПОСОБ ТЕРМИЧЕСКОГО ОБЕЗВРЕЖИВАНИЯ МИНЕРАЛЬНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ГРУНТОВ, ЗАГРЯЗНЕННЫХ ВЫСОКОТОКСИЧНЫМИ ХЛОРОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ | 2017 |
|
RU2650558C1 |
Способ обезвреживания отработанных бентонитовых буровых растворов на водной основе | 1983 |
|
SU1189866A1 |
CN 107211765 A, 29.09.2017 | |||
CZ 2004476 A3, 16.11.2005. |
Авторы
Даты
2020-12-14—Публикация
2020-03-26—Подача