БЕЛКОВЫЙ НАПИТОК ИЗ ПИВНОЙ ДРОБИНЫ, СПОСОБ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ Российский патент 2020 года по МПК A23J3/14 A23J1/12 A23L2/38 

Описание патента на изобретение RU2739624C1

Область техники

Группа изобретений относится к пищевой промышленности и касается технологии переработки отходов пивоваренной промышленности, а именно способа и устройства переработки пивной дробины с получением белкового напитка (растительного молочка), который может быть использован в продуктах питания с лечебно-профилактическими и диетическими свойствами. В частности, белок пивной дробины представляет наиболее значимый интерес для использования в спортивном и диетическом питании.

Уровень техники

Растительное молоко с каждым днем набирает всё большую популярность. Несмотря на то, что молоко животного происхождения давно присутствует в рационе человека, нередко возникает необходимость уменьшить его потребление или отказаться вовсе. Причиной этому может быть непереносимость лактозы. Растительное молоко получают из орехов (миндальное, кедровое, кокосовое, из кешью, из фисташек, макадамии, бразильского ореха, грецкого, пекана, каштанов и фундука), из зерновых и бобовых (рисовое, соевое, овсяное, гречневое, гороховое, из спельты, ячменя, проса, киноа, арахиса, теффа, амаранта и др.), из семечек (маковое, кунжутное, конопляное, из семян чиа, подсолнечника и тыквенных семечек) путем измельчения до однородного состояния, смешивания с водой, отжима и процеживания. В результате получают жидкость, по виду напоминающую молоко, которую можно использовать в качестве заменителя молока при приготовлении пищи, кулинарных изделий, добавки в чай или кофе.

Растительное молоко имеет массу полезных свойств, так как оно производится из натуральных растительных продуктов. Следовательно, в его состав входит масса различных необходимых организму веществ, таких как: полиненасыщенные жирные кислоты (ПНЖК), витамины, микро- и макроэлементы. Так, например, в 100 мл продукта «Немолоко овсяное» с энергетической ценностью 150 кДж (35 ккал) содержится 1 г белка, 0,5 г жира, 6,5 г углеводов и 0,08 г соли.

Из уровня техники известно приготовление овсяного напитка оздоровительного назначения, включающее приготовление суспензии из овсяного зернового субстрата, обработку суспензии из овсяного зернового субстрата добавлением термостабильной а-амилазы с нагревом до температуры 90-95°C, выдерживание в течение 0,5-1,5 ч, последующий ферментативный гидролиз при температуре 50-55°C а-амилазой, образующей при гидролизе мальтозу, и р-глюканазой, отделение жидкой фазы и заключительную инактивацию ферментативной активности (ЕА20607).

Из уровня техники известно также приготовление различных жидких белковых продуктов из пивной дробины, образующейся после производства пива и содержащей множество ценных пищевых компонентов. Пивная дробина получается на стадии фильтрования осахаренного пивного затора. Процентный массовый состав пивной дробины в отходах пивного производства составляет не менее 98%. Дробина состоит из жидкой и твердой фаз. Твердая фаза, которая в пивной дробине составляет ориентировочно 45%, содержит оболочки зерна, частицы ядер зерна. В составе пивной дробины присутствуют жиры, клетчатка, а также аминокислоты: гистидин, лизин, лейцин, изолейцин, метионин, валин, глицин, треонин, серин, аланин, аргинин, фенилаланин, тирозин и др. В настоящее время пивная дробина в нативном виде не находит широкого применения в связи с тем, что ее транспортировка и хранение затруднены – уже при температуре 15-30°С через 6-8 часов в пивной дробине начинаются процессы брожения и она становится непригодной для переработки и дальнейшего использования.

Из уровня техники известен белковый напиток из белкового порошка, получаемого из пивной дробины (WO2018014020). Концентрация белка в порошке составляет до 50масс.%. При этом технология получения порошка включает добавление к пивной дробине эффективного количества протеазы, нагревание полученной комбинации до температуры от 20°С до 80°С и выдерживание при данной температуре в течение от 60 до 150 мин с получением жидкой фракции, содержащей гидролизованные белки и фракции твердых веществ, отделение полученной жидкой фракции с последующим высушиванием до получения белкового порошка. Напиток получают смешением белкового порошка с водой. Однако способ является трудоемким в связи с необходимостью дополнительного технологического этапа, направленного на высушивание промежуточного продукта до порошка. Кроме того, при термохимической обработке пивной дробины происходит частичная потеря полезных компонентов пивной дробины.

Наиболее близким к заявляемому изобретению является жидкий белковый продукт и способ его получения из пивной дробины с использованием прессово-шнекового сепаратора (https://science-engineering.ru/ru/article/view?id=1121). Исходную дробину обрабатывают на прессо-шнековом сепараторе, в результате чего из нее путем механического отжима шнековым устройством через сито с размером ячейки 0,5-0,75 мм отделяют жидкую часть (фильтрат) и на выходе из сепаратора получают обезвоженную дробину с влажностью 60-70%. Фильтрат пивной дробины - мутная жидкость, содержащая 3-5% взвешенных веществ (измельченные зерновые оболочки) и большое количество тонкодисперсных частиц, белков и полисахаридов, которые используют в качестве пищевых, кормовых добавок или подвергают доочистке с применением центрифужного сепаратора и флотатора. Однако перед прессованием пивная дробина не измельчается, и часть белка оказывается связанной внутри спрессованных частиц шелухи, в связи с чем при последующем удалении шелухи происходит потеря белка. Кроме того, получаемый белковый продукт не подлежит длительному хранению в связи с отсутствием в технологическом процессе этапа антимикробной обработки получаемого продукта.

Таким образом, все существующие способы переработки пивной дробины, направленные на получение белковых продуктов, характеризуются значительной потерей белка. Кроме того, известные способы преимущественно направлены на получение из пивной дробины продукта в виде муки или концентрата без выделения в технологическом процессе готового к применению продукта в виде молочка, расширяющего линейку продуктов диетического питания.

Технической проблемой, решаемой заявляемым изобретением, является устранение недостатков, присущих перечисленным выше аналогам.

Раскрытие изобретения

Техническим результатом заявляемой группы изобретений является получение продукта переработки пивной дробины в виде бактериологически чистого напитка (растительного, ячменного молочка) влажностью не менее 97%, содержащего белки не менее 10,0 масc.% в сухом остатке, и жиры не более 15,0 масc.%, а также частицы размером не более 0,1 мм.

Напиток является продуктом, готовым к применению, или промежуточным продуктом, который может быть сконцентрирован до требуемой концентрации белков. При этом напиток получают из пивной дробины в рамках одного технологического цикла. При производстве напитка образуются отделенные взвешенные частицы, которые могут быть подвергнуты высушиванию, и использоваться в качестве белковой минерально-витаминной добавки.

Технический результат достигается белковым напитком, полученным из пивной дробины, с влажностью не менее 97%, размером частиц не более 0,1 мм и содержащим белки не менее 10,0 масc.% в сухом остатке, и жиры не более 15,0 масc.% в сухом остатке, при этом содержание ненасыщенных жирных кислот составляет не менее 5 масс.% в сухом остатке. Предпочтительно, когда содержание белка в напитке составляет 15,0 – 40,0 масc.% в сухом остатке, а содержание жиров 5,0 - 10,0 масc.% в сухом остатке.

Технический результат также достигается способом получения заявляемого белкового напитка, включающего разрыхление исходной пивной дробины до получения однородной массы, удаление механических включений, затем измельчение на коллоидной мельнице с добавление воды до получения пастообразной массы до влажности не более 95%, затем удаление из полученной массы измельчённой шелухи с получением белковой суспензии, из которой удаляют взвешенные частицы с получением белкового напитка, который обрабатывают с целью подавления патогенной микрофлоры. При этом измельчение сырья на коллоидной мельнице проводят до размера частиц 0,1-0,9 мм при частоте вращения ротора 1800-3200 об/сек. Удаление шелухи после измельчения в коллоидной мельнице проводят посредством шнекового экстрактора, разрыхление до получения однородной массы и удаление механических включений проводят с использованием вибросита с размером отверстий сит 6-10 мм, и при частоте колебаний сита от 10 до 50 Гц амплитудой 2-20 мм. Подачу воды при загрузке пивной дробины в коллоидную мельницу осуществляют с обеспечением равномерного увлажнения сырья по объему. Для удаления остаточных частиц шелухи белковую суспензию подвергают дополнительной вибрационной фильтрации через сита с размером ячеек 0,1-0,5 мм. Удаление взвешенных частиц из белковой суспензии осуществляют с помощью центрифуги, сепаратора или флотатора. Для подавления патогенной микрофлоры белковый напиток подвергают ультрафиолетовой обработке или ультрапастеризации, при этом предварительно белковый напиток концентрируют до получения требуемой концентрации белка.

Также технический результат достигается установкой для получения белкового напитка, содержащей соединенные в технологической последовательности: устройство для разрыхления пивной дробины и удаления из нее механических включений; измельчитель, выполненный с возможностью равномерного увлажнения сырья по объему, измельчения до получения пастообразной массы; экстрактор, выполненный с возможностью измельчения массы до размера частиц 0,01-0,5 мм и разделения ее на суспензию и шелуху; устройство для удаления взвешенных частиц; устройство для обработки белкового напитка для подавления патогенной микрофлоры; накопительная емкость для белкового напитка. При этом устройство для удаления взвешенных частиц из белковой суспензии выполнено в виде центрифуги, сепаратора или флотатора, устройство для подавления патогенной микрофлоры выполнено в виде ультрафиолетового облучателя или ультрапастеризатора (ультрапастеризационной установки), в качестве устройства для разрыхления и удаления механических включений использовано вибросито с магнитным уловителем, в качестве измельчителя использована коллоидная мельница, выполненная с возможностью измельчения исходной пивной дробины до фракции 0,1-0,9 мм и снабженная средством подачи жидкости для увлажнения сырья, а в качестве экстрактора использован шнековый экстрактор со скоростью вращения шнека от 2 об/мин до 8 об/мин. Вибрационный фильтр выполнен с возможностью дополнительного отделения из полученной суспензии оставшихся частиц шелухи и имеет размер ячеек 0,1-0,5 мм. Вибросито использовано с размером ячеек 6-10 мм, частотой колебаний сита от 10 до 50 Гц амплитудой 2-20 мм, коллоидная мельница содержит воронкообразную загрузочную емкость, при этом для равномерного увлажнения сырья она содержит средство, выполненное в виде водяного трубопровода с отверстиями или форсунками, расположенными по окружности емкости в ее верхней части выше отметки, характеризующей максимальную загрузку емкости сырьем. Установка дополнительно может содержать блок концентрирования белкового напитка.

Краткое описание чертежей

На фиг. 1 представлена фотография части опытной производственной (технологической) линии для получения белкового напитка из пивной дробины, включающей вибросито, транспортёр, коллоидную мельницу, шнековый экстрактор.

На фиг. 2 представлена схема технологической линии для осуществления заявляемого способа, где 1 – устройство для разрыхления пивной дробины и удаления из нее механических включений (вибросито), 2 – транспортёр, 3 - измельчитель (коллоидная мельница), 4 – водопровод, 5 - шнековый экстрактор, 6 - импеллерный насос, 7 - вибрационный фильтр, 8 - накопительная ёмкость для шелухи, 9 – накопительная ёмкость для белковой суспензии, 10 - устройство для удаления взвешенных частиц (центрифуга, сепаратор или флотатор), 11 – устройство для подавления патогенной микрофлоры белкового напитка (ультрафиолетовый облучатель или ультрапастеризационная установка), 12 - емкость для напитка.

На фиг. 3 представлено схематичное изображение загрузочной емкости коллоидной мельницы, А - схема расположения конструктивных элементов в загрузочной емкости коллоидной мельницы, Б – вид сверху на загрузочную емкость, В – схематичное изображение коллоидной мельницы в поперечном разрезе, где 13 – кольцевой водяной трубопровод, 14 – отверстия в трубопроводе для подачи воды, 15, 16, 17 – датчики уровня, 18 – регулировочный вентиль подачи воды, 19 – статор, 20 – ротор, 21 – корпус статора, 22 – вал ротора, 23 – загрузочная емкость коллоидной мельницы 3.

Осуществление изобретения

Ниже представлено более детальное описание заявляемого изобретения, которое не ограничивает объем притязаний заявляемого изобретения, а демонстрирует возможность осуществления изобретения с достижением заявляемого технического результата.

Исходную пивную дробину с влажностью 70-90% подвергают переработке до истечения 3 часов после ее получения (с момента образования ее в качестве отхода пивного производства). Температура пивной дробины на момент поступления с производства может быть от 2°С до 80°С. Дробину загружают ручным или любым механизированным способом на вибросито 1 (фиг.1, 2) с размером ячеек сита 6-10 мм, снабженным магнитным уловителем, в котором происходит разрыхление пивной дробины и удаление из нее механических и металлических посторонних включений. Обработка на вибросите 1 заключается в просеивании дробины с частотой колебаний сита от 10 до 50 Гц амплитудой 2-20 мм в течение 2-10 секунд с получением сырья без комков и однородного состава для следующего этапа переработки, на котором производят его измельчение. Разрыхление пивной дробины до получения однородной массы с удалением механических включений может быть реализовано помимо вибросита любым другим известным из уровня техники устройством или набором устройств, обеспечивающим перечисленный функционал. Далее для измельчения разрыхлённую пивную дробину транспортером 2 подают в коллоидную мельницу 3 (фиг.3) или другой измельчитель, обеспечивающий измельчение до фракции 0,1-0,9 мм. При этом в процессе загрузки сырья в загрузочную емкость коллоидной мельницы постепенно добавляют воду с обеспечением равномерного увлажнения сырья по объему, которое может осуществляться в непрерывном или пульсирующем режимах. Количество подаваемой воды, как правило, составляет от 0,5:1 до 1:1 по массе по отношению к пивной дробине. Расчет количества и скорости подачи воды может быть сделан предварительно исходя из измеренных исходных параметров влажности поступившей на переработку пивной дробины с учетом потери влажности при просеивании дробины через вибросито. Влажность пивной дробины, перерабатываемой в коллоидной мельнице, предпочтительно должна находиться в пределах 90-95%. В коллоидной мельнице 3 происходит равномерное ее перемешивание (и/или гомогенизация) до получения пастообразной однородной массы - пульпы с вязкостью предпочтительно 750-1400 сПа⋅с, которая затем самотеком поступает в шнековый экстрактор 5, в котором происходит дополнительное измельчение массы и ее разделение на суспензию с влажностью 90-95% и вязкостью 1,5 – 3 сПа⋅с и шелуху с размером частиц шелухи от 0,01 мм до 1,0 мм и влажностью 60-75%. Температура пивной дробины, обрабатываемой в коллоидной мельнице и шнековом экстракторе может быть от 2°С до 90°С. Подача дробины в коллоидную мельницу может осуществляться любыми известными из уровня техники средствами, например, шнековым, или ленточным, или скребковым транспортёром.

Измельчение пивной дробины в коллоидной мельнице 3 происходит в корпусе 21 между рабочими поверхностями ротора 20 и статора 19, например, при вращении ротора 20 мельницы со скоростью 1800-3200 об/сек, что позволяет обеспечить густую, однородную, но текучую консистенцию пульпы для максимального извлечения питательной фракции из исходного сырья на этапе шнековой экстракции. Измельчение пивной дробины проводят при подаче воды в воронкообразную загрузочную емкость (приемный бункер) 23 коллоидной мельницы 3 через отверстия 14 водяного трубопровода 13, расположенного по окружности емкости в ее верхней части выше отметки, характеризующей максимальную загрузку емкости сырьем. Регулирование количества подаваемой воды может осуществляться с помощью вентиля 18. В предпочтительном варианте осуществления изобретения отверстия 14 в трубопроводе равномерно распределены по его длине, что обеспечивает равномерное увлажнение (разжижение) пивной дробины по всему объёму в процессе обработки.

После измельчения в коллоидной мельнице 3 пульпу подвергают обработке в шнековом экстракторе 5 со скоростью вращения шнека от 2 об/мин до 8 об/мин, что позволяет максимально быстро, в течение 1-2 секунд отделить пищевую суспензию от побочного продукта производства – ячменной шелухи. Для этого произведённая коллоидной мельницей 3 пастообразная масса (пульпа) самотёком поступает в шнековый экстрактор 5, где она сепарируется от шелухи с получением на выходе пищевой суспензии с влажностью не более 95%, и побочного продукта производства – ячменной шелухи с влажностью 60-75% и размерами частиц шелухи от 1,0 мм до 5,0 мм, которая собирается в накопительной емкости 8. Так как после обработки суспензии в шнековом экстракторе 5 в ней все еще остаётся 2-5% мелкой шелухи с размерами от 0,01 до 1,0 мм, суспензия передаётся импеллерным или другим насосом 6, рассчитанным на работу с пищевой суспензией со степенью загрязнения до 5% мелкими растительными фракциями с размером не более 1,0 мм, на следующий этап очистки в вибрационный фильтр 7 с размерами ячеек фильтра 0,2-0,5 мм, что позволяет практически полностью убрать из пищевой суспензии оставшуюся шелуху, которая остаётся после этапа шнековой экстракции. После вибрационного фильтра 7 посредством импеллерного насоса 6 суспензию перекачивают в накопительную емкость 9. Полученную белковую суспензию, содержащую 50-65 масс.% протеина в сухом остатке, направляют на следующую стадию технологической цикла - устройство для удаления взвешенных частиц 10 с получением конечного продукта – молочка. В качестве устройства для удаления взвешенных частиц 10 может быть использовано любое устройство, известное из уровня техники, например, центрифуга, сепаратор или флотатор с частотой вращения 1500-6500 об/мин и приводной мощностью не менее 7,4 кВт (производительностью около 90 гл/ч). Полученное после устройства 10 молочко может выступать в качестве конечного продукта (может быть расфасовано в емкости объемом 50-500 мл для поставки потребителю), либо подвергнуто дальнейшему концентрированию до получения требуемой концентрации белка. Как правило, перед упаковкой напитка его подвергают обработке устройством 11 для подавления патогенной микрофлоры.

В зависимости от назначения и конкретного применения напитка в него могут быть добавлены подсластители (углеводы), например фруктоза, глюкоза, сахароза, трегалулоза, изомальтоза, изомелицитоза. Также для улучшения вкуса могут быть добавлены «компоненты трав», в частности, экстракты, растворы, вытяжки или эссенции из частей растений, таких как, например, анис, корень валерианы, крапива, листья ежевики, листья земляники, фенхель, манжетка, лапчатка гусиная, женьшень, плод шиповника, цветы гибискуса, листья малины, бузина, хмель, имбирь, зверобой, ромашка, кориандр, мята курчавая, индейский жасмин (Lapacho), лаванда, лимонник (Limonen-Gras), майоран, мальва, мелисса, омела, мята перечная, календула, розмарин, горечавка, тысячелистник, тимьян, иссоп, корица и т.д. или «компоненты фруктов» согласно изобретению, в частности, экстракты из фруктов, таких как яблоки, бананы, груши, ананасы, апельсины, грейпфруты, вишня, вишня обыкновенная, лимоны, цитрусовые, маракуйя, персики, облепиха, малина, земляника, ежевика, смородина, крыжовник, киви и т.д., а также натуральные или идентичные натуральным вещества, придающие запах и/или вкус, например эфирных масел из растений или фруктов, таких как лимонное масло, мятное масло или гвоздичное масло, фруктовых эссенций, придающих аромат фруктовых соков, аниса, ментола, эвкалипта и т.д. В качестве красящих компонентов для корректировки цвета и/или для получения соответствующего внешнего вида могут быть использованы натуральные или синтетические красители. Красящими компонентами могут быть, например, пигменты растительного происхождения, такие как каротиноиды, флавоноиды или антоцианы; красители животного происхождения, неорганические пигменты, такие как пигмент оксида железа; продукты ферментативного и неферментативного окрашивания в коричневый цвет, продукты пастеризации, такие как карамелизированный сахар; или синтетические красители, такие как азосоединения, трифенилметановые соединения, индигоидные соединения, ксантеновые соединения или хинолиновые соединения. Пригодными синтетическими красителями являются, например, эритрозин, индиго камин или тартразин. Для обогащения компонентного состава напитка могут быть дополнительно добавлены витамины, микроэлементы. В качестве аминокислотных компонентов могут быть добавлены смеси незаменимых аминокислот, которые сами не синтезируются в организме человека или могут вырабатываться только с недостаточной скоростью и поэтому должны доставляться с пищей. Незаменимыми аминокислотами, в частности, являются His, Ile, Leu, Lys, Thr, Trp и Val. В качестве кислотных компонентов могут быть добавлены кислоты, которые или дополняют напиток, согласно изобретению, кисловатым привкусом, и/или способствуют улучшению устойчивости при хранении. Предпочтительно пищевыми кислотами являются, в частности, лимонная кислота, яблочная кислота, молочная кислота, винная кислота и им подобные. Напиток, согласно изобретению, в предпочтительной форме выполнения также может быть в виде газированного напитка, то есть может содержать угольную кислоту или диоксид углерода.

Шелуха является побочным продуктом переработки пивной дробины и в процессе работы шнекового экстрактора самопроизвольно ссыпается в накопительный бункер, из которого шнековым или винтовым, или другим транспортёром передаётся в накопительную ёмкость 8.

Получаемый белковый напиток характеризуется влажностью не менее 97%, размером частиц не более 0,1 мм, содержит белки не менее 10,0 масc.% в сухом остатке, и жиры не более 15,0 масc.% в сухом остатке, при этом содержание ненасыщенных жирных кислот составляет не менее 5,0 масс.% в сухом остатке. Предпочтительным является получение напитка с содержанием белка 15,0 – 40,0 масc.% в сухом остатке, жиров 5,0 - 10,0 масc.% в сухом остатке.

Белковый напиток характеризуется биологической питательной ценностью и хорошей усвояемостью, мягким вкусом, с нотками обжаренного хлеба, а также однородной (гомогенной) консистенцией. Цвет от белого до белого с сероватым оттенком. При хранении допускается образование небольшого осадка, что не влияет на органолептические свойства и питательную ценность продукта.

Ниже представлен конкретный пример получения белкового напитка в объёме 200 литров. Для этого 260 кг пивной дробины влажностью 75,59% загружали ручным способом на вибросито 1, в качестве которого был использован вибрационный стол XFZ1020 с одноуровневым ситом с ячейкой 10 мм, длина стола 2000 мм, ширина стола 1000 мм, частота вибрации 20 Гц, амплитуда вибрации 8 мм. С вибросита 1 массу ленточным транспортёром 2 подавали в коллоидную мельницу 3, в качестве которой использовали устройство KDDJ-1,5 мощностью 11 кВт с частотой вращения ротора 20 2200 об/мин, которая также была снабжена средством подачи питьевой воды из блока 4. В коллоидной мельнице пивная дробина увлажнялась водой, расчётное количество которой составило 170 литров (0,67:1), и которая поступала в коллоидную мельницу со скоростью 15 литров в минуту, при этом увлажненная пивная дробина подвергалась измельчению до размера фракции 0,1-0,9 мм. Контроль процесса подачи исходного сырья и воды в загрузочную емкость 23 коллоидной мельницы 3 осуществлялся с помощью трех датчиков уровня 15, 16 и 17, встроенных в корпус загрузочной емкости 23 и микроконтроллера, расположенного в непосредственной близости от датчиков уровня, на раме стола, на котором установлена коллоидная мельница. При этом один из датчиков – верхний 17, использован для контроля максимально возможного уровня загрузки сырья в бункер (85-90 об.% от максимальной вместимости бункера), при достижении которого подавалась команда на остановку загрузочного транспортера; второй датчик – средний 16, использован для контроля минимального уровня загруженного сырья (25-30 об.% от максимальной вместимости бункера), при достижении которого подавалась команда на включение загрузочного транспортера и подачу сырья в загрузочный бункер, что обеспечивало непрерывный процесс работы коллоидной мельницы. Третий датчик – нижний 15, установлен у дна загрузочного бункера, на расстоянии 15 см от дна, для контроля минимально возможного количества сырья в бункере (10-15 об.% от максимальной вместимости бункера), ниже которого работа коллоидной мельницы прекращается до момента поступление очередной партии сырья. Полученная пульпа с вязкостью 900-1200 сП и влажностью 95% после коллоидной мельницы поступала в шнековый экстрактор 5, в качестве которого был использован агрегат марки KDLZ-1,5 мощностью 4 кВт с частотой вращения 4,5-10 об/мин, на выходе из которого получали основной продукт производства – пищевую суспензию с влажностью 95%, вязкостью 2,013 сП и побочный продукт производства – ячменную шелуху с влажностью 70,84%. Пищевую суспензию посредством импеллерного насоса 6 мощностью 0,25 кВт с частотой вращения 1200 об/мин подавали на вибрационный фильтр 7 марки XZS-1200-1S мощностью 0,75 кВт с прозором отверстия 0,3 мм и после фильтрации, посредством импеллерного насоса 8 мощностью 0,25 кВт с частотой вращения 1200 об/мин перекачивали в накопительную ёмкость 9. Шелуха самопроизвольно ссыпалась в накопительную ёмкость 8. Таким образом, получали пищевую суспензию влажностью 93%, вязкостью 1,907 сП и размером частиц до 0,005-0,3 мм. Растительное молочко, получали отделением из суспензии взвешенных частиц с помощью центрифуги, в качестве которой была использована фильтрующая центрифуга LGZ/PGZ800 с мощностью двигателя 7,5 кВт и максимальной скоростью вращения 1500 об/мин.

Для оценки состава 12 литров молочка высушивали в распылительной сушилке HT-RY1500 в течение 8 часов при температуре 200°С до содержания влаги 4,97% (производительность распылительной сушки HT-RY1500 составляет 1500 мл суспензии в час). Проведенный анализ показал, что полученное растительное молочко (образец 1) характеризуется следующим составом, масс.% в сухом остатке (Таблица 1):

Таблица 1

Показатель НД на метод испытания Молочко в сухом виде (образец 1) Перевариваемость (%) Методика определения перевариваемости in vitro 95,74 Влажность, % 4,97 Содержание сырого протеина, % на а.с.в. 34,66 Массовая доля сахара, % ГОСТ26176-91 2,1 Массовая доля крахмала, % ГОСТ26176-91 12,4 Массовая доля сырого жира, % ГОСТ13496.15-2016 10,14 Массовая доля жирных кислот к сумме жирных кислот (%) ГОСТ30418-96 Миристиновая (С14:0) 0,04 Пальметиновая (С16:0) 2,36 Пальмитолеиновая (С16:1) 0,02 Стеариновая (С18:0) 0,34 Олеиновая (С18:1) 1,31 Линолевая (С18:2) 5,50 Линоленовая (С18:3) 0,45 Арахиновая (С20:0) 0,02 Эйкозеновая (гондоиновая) (С20:1) 0,05 Бегеновая (С22:0) 0,02 Эруковая (С22:1) 0,02

Общее время переработки 260 кг пивной дробины составило 25 минут.

Таким образом, полученный заявляемым способом белковый напиток характеризуется высоким содержанием белка с сохранением аминокислотного состава пивной дробины, а также низким содержанием жиров и клетчатки. Способ является простым в исполнении, не затратным по времени - время от загрузки сырья в установку до выхода готового продукта в виде суспензии, например, при расчете на 100 кг пивной дробины, составляет от 5 до 10 минут при производительности оборудования от 20 до 500 тонн/сутки.

С помощью данной установки по заявляемому способу была проведена переработка пивной дробины, взятой с пяти разных производственных площадок. Количественное содержание компонентов в составе пивной дробины, отличалось от исходного состава, приведенного в табл. 1 в пределах 1-5%. В таблице 2 представлены составы растительного молока с наиболее оптимальным содержанием ключевых компонентов.

Таблица 2

Состав Напиток образец 2 образец 3 образец 4 образец 5 образец 6 содержание (масс.%) Перевариваемость (%) 95,0 97,0 95,4 94,7 93,8 Влажность, % 5,00 4,7 5,1 4,9 4,92 Содержание сырого протеина, % на а.с.в. 36,47 12,5 39,6 26,8 30,5 Массовая доля сахара, % 1,5 0,5 1,3 0,9 1,55 Массовая доля крахмала, % 10,1 4,7 12,3 6,1 9,6 Массовая доля сырого жира, % 9,26 4,98 10,38 5,98 9,5 Миристиновая (С14:0) 0,03 0,01 0,037 0,011 0,02 Пальметиновая (С16:0) 2,3 1,46 2,26 2,0 1,950 Пальмитолеиновая (С16:1) 0,01 0,014 0,022 0,009 0,018 Стеариновая (С18:0) 0,29 0,17 0,36 0,24 0,25 Олеиновая (С18:1) 1,13 0,61 1,37 1,09 1,03 Линолевая (С18:2) 5,1 2,54 5,42 3,53 5,05 Линоленовая (С18:3) 0,35 0,18 0,49 0,18 0,5 Арахиновая (С20:0) 0,015 0,01 0,024 0,007 0,012 Эйкозеновая (гондоиновая) (С20:1) 0,03 0,017 0,025 0,04 0,04 Бегеновая (С22:0) 0,01 0,009 0,022 0,009 0,017 Эруковая (С22:1) 0,03 0,015 0,032 0,04 0,02

Исходя из выше представленных данных, можно сделать вывод о том, что, несмотря на использование на разных предприятиях разного сорта ячменя, отличий в технологии производства пивного солода, рецепта солодовой смеси для производства пива и т.д., заявляемым способом получают белковый напиток в виде молочка с высоким содержанием белка. Двухэтапная обработка пивной дробины (в коллоидной мельнице и шнековом экстракторе) без использования многоэтапных процессов прессования, сушки, химико-термической обработки позволяет получать белковый напиток с содержанием белка не менее 10,0 масc.% в сухом остатке и без содержания глютена.

Результаты микробиологического исследования полученного молочка до и после его обработки ультрафиолетовым облучателем ОТЛ-М-К4, доза (экспозиция) УФ облучения –250 мДж/см2 в течение 15 сек. представлены в Таблице 3.

Таблица 3

Наименование пробы БГКП
(Бактерии группы кишечной палочки)
КМАФАнМ
(количество мезофильных аэробных и факультативно анаэробных микроорганизмов или общая бактериальная обсемененность)
КОЕ/мл КОЕ/мл Норма БАД 0,1 1*104 Молочко до УФ обработки Обнаружено в 0,00001 мл Более 1*106 Молочко после УФ обработки Не обнаружено в 1 мл Менее 1*101 Молочко с УФ обработкой после 3 сут. хранения Не обнаружено в 1 мл отсутствует Молочко с УФ обработкой после 5 сут. хранения Не обнаружено в 1 мл отсутствует

Таким образом, белковый напиток, полученный заявляемым способом, характеризуется отсутствием БГКП и минимальным значением концентрации КМАФАнМ, что увеличивает срок годности продукта до 12 месяцев, после вскрытия упаковки продукт хранят при температуре 2-8°С до 7 дней.

В таблице 4 приведены параметры обработки пивной дробины (образцы 2-6).

Таблица 4

Оборудование Параметры обработки образец 2 образец 3 образец 4 образец 5 образец 6 Коллоидная мельница/ частота вращения ротора (об/сек) 1800 3000 2500 2000 3200 Вибросито
размер отверстий сита (мм)/ частота колебаний (Гц и мм)
10/10, 15 5/40, 10 7/30, 20 8/20, 15 6/50, 8
Шнековый экстрактор/ скорость вращения (об/мин) 3 8 5 7 10 Фильтрация/ размер ячеек (мм) 0,5 0,1 0,3 0,4 0,1

Способ получения ячменного напитка из пивной дробины является универсальным, позволяет максимально сохранить все ценные биологически активные компоненты исходной пивной дробины. Богатый химический состав пивной дробины с минимальным содержанием углеводов предопределяет перспективность ее использования в пищевой промышленности, в частности, в производстве мучных кондитерских изделий, для приготовления каш, смузи и т.д. вместо молока, а также добавлять в кофе или чай.

Похожие патенты RU2739624C1

название год авторы номер документа
БЕЛКОВЫЙ ПРОДУКТ ИЗ ПИВНОЙ ДРОБИНЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Гордилов Олег Григорьевич
RU2730134C1
БЕЛКОВАЯ СУСПЕНЗИЯ ИЗ ПИВНОЙ ДРОБИНЫ, СПОСОБ И УСТАНОВКА ДЛЯ ЕЕ ПОЛУЧЕНИЯ 2019
  • Гордилов Олег Григорьевич
RU2719508C1
УСТРОЙСТВО ДЛЯ ИЗМЕЛЬЧЕНИЯ ПИВНОЙ ДРОБИНЫ И ПРОИЗВОДСТВЕННАЯ ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТА С ВЫСОКИМ СОДЕРЖАНИЕМ БЕЛКА 2020
  • Гордилов Олег Григорьевич
RU2729826C1
НАПОЛНИТЕЛЬ ТУАЛЕТА ДЛЯ ДОМАШНИХ ЖИВОТНЫХ 2021
  • Гордилов Олег Григорьевич
RU2758803C1
КОРМОВАЯ СМЕСЬ НА ОСНОВЕ ПОСЛЕСПИРТОВОЙ БАРДЫ 2015
  • Ковалёв Александр Витальевич
  • Сидоров Александр Витальевич
RU2621314C1
СПОСОБ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОГО СЫРЬЯ ДЛЯ ПОЛУЧЕНИЯ ПЕНТОЗНЫХ ГИДРОЛИЗАТОВ, СОДЕРЖАЩИХ, ПРЕИМУЩЕСТВЕННО, КСИЛОЗУ 1997
  • Блинков С.Д.
  • Букин Ю.Б.
  • Немойтин М.М.
  • Федоров А.Л.
RU2109059C1
БИОЛОГИЧЕСКИ АКТИВНАЯ МУКА ИЗ ПИВНОЙ ДРОБИНЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2003
  • Бабаев И.Э.
  • Сницарь А.И.
  • Иванов А.В.
  • Минко Н.Д.
  • Кирилов М.П.
  • Егоров И.А.
  • Рыжов С.А.
  • Авылов Ч.К.
  • Сон К.Н.
  • Сницарь А.А.
RU2250045C2
Способ получения напитка или компонента напитка из пивных дробин 2017
  • Джил-Мартинез Хорхе
  • Арендт Элке
RU2753252C2
СПОСОБ ПОЛУЧЕНИЯ СУХОГО СОЕВОГО КОНЦЕНТРАТА 2013
  • Ивлев Александр Александрович
RU2531903C2
СПОСОБ ПОЛУЧЕНИЯ КОРМОВОГО БЕЛКОВО-ЛИПИДНОГО КОНЦЕНТРАТА ИЗ ОТХОДОВ РАСТИТЕЛЬНОГО И ЖИВОТНОГО ПРОИСХОЖДЕНИЯ 2018
  • Бабаев Наум Александрович
  • Соколов Иван Викторович
  • Ильин Дмитрий Юрьевич
  • Бастраков Александр Иванович
RU2673749C1

Иллюстрации к изобретению RU 2 739 624 C1

Реферат патента 2020 года БЕЛКОВЫЙ НАПИТОК ИЗ ПИВНОЙ ДРОБИНЫ, СПОСОБ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к пивоваренной промышленности. Способ получения белкового напитка, имеющего влажность не менее 97%, размер частиц не более 0,1 мм и содержащего белки не менее 10,0 масc.%, жиры не более 15,0 масc.%, ненасыщенные жирные кислоты не менее 5,0 масс.% в сухом остатке, включает разрыхление пивной дробины до получения однородной массы, удаление механических включений, измельчение на коллоидной мельнице с добавлением воды до получения пастообразной массы до влажности не более 95%, удаление из полученной массы измельчённой шелухи с получением белковой суспензии, из которой удаляют взвешенные частицы с получением белкового напитка, который обрабатывают для подавления патогенной микрофлоры. Также описана установка для осуществления этого способа. Изобретение позволяет получить бактериологически чистый напиток из пивной дробины в рамках одного технологического цикла. 3 н. и 19 з.п. ф-лы, 3 ил., 4 табл., 1 пр.

Формула изобретения RU 2 739 624 C1

1. Белковый напиток, полученный из пивной дробины, характеризующийся тем, что имеет влажность не менее 97%, размер частиц не более 0,1 мм и содержит белки не менее 10,0 масc.% в сухом остатке и жиры не более 15,0 масc.% в сухом остатке, при этом содержание ненасыщенных жирных кислот составляет не менее 5,0 масс.% в сухом остатке.

2. Белковый напиток по п. 1, характеризующийся тем, что содержание белка составляет 15,0-40,0 масc.% в сухом остатке, жиров 5-10,0 масc.% в сухом остатке.

3. Способ получения белкового напитка по п. 1, характеризующийся тем, что исходную пивную дробину разрыхляют до получения однородной массы, удаляют механические включения, затем измельчают на коллоидной мельнице с добавлением воды до получения пастообразной массы до влажности не более 95%, затем из полученной массы удаляют измельчённую шелуху с получением белковой суспензии, из которой удаляют взвешенные частицы с получением белкового напитка, который обрабатывают для подавления патогенной микрофлоры.

4. Способ по п. 3, характеризующийся тем, что измельчение сырья на коллоидной мельнице проводят до размера частиц 0,1-0,9 мм.

5. Способ по п. 3, характеризующийся тем, что измельчение массы в коллоидной мельнице проводят при частоте вращения ротора 1800-3200 об/с.

6. Способ по п. 3, характеризующийся тем, что удаление шелухи после измельчения в коллоидной мельнице проводят посредством шнекового экстрактора.

7. Способ по п. 3, характеризующийся тем, что подачу воды осуществляют при загрузке пивной дробины в коллоидную мельницу с обеспечением равномерного увлажнения сырья по объему.

8. Способ по п. 3, характеризующийся тем, что разрыхление до получения однородной массы и удаление механических включений проводят с использованием вибросита с размером отверстий сит 6-10 мм и при частоте колебаний сита от 10 до 50 Гц амплитудой 2-20 мм.

9. Способ по п. 3, характеризующийся тем, что белковую суспензию подвергают дополнительной вибрационной фильтрации через сита с размером ячеек 0,1-0,5 мм для удаления остаточных частиц шелухи.

10. Способ по п. 3, характеризующийся тем, что удаление взвешенных частиц из белковой суспензии осуществляют с помощью центрифуги, сепаратора или флотатора.

11. Способ по п. 3, характеризующийся тем, что для подавления патогенной микрофлоры белковый напиток подвергают ультрафиолетовой обработке или ультрапастеризации.

12. Способ по п. 3, характеризующийся тем, что перед обработкой белкового напитка для подавления патогенной микрофлоры его концентрируют до получения требуемой концентрации белка.

13. Установка для получения белкового напитка по п. 1, характеризующаяся тем, что содержит соединенные в технологической последовательности устройство для разрыхления пивной дробины и удаления из нее механических включений; измельчитель, выполненный с возможностью равномерного увлажнения сырья по объему, измельчения до получения пастообразной массы; экстрактор, выполненный с возможностью измельчения массы до размера частиц 0,01-0,5 мм и разделения ее на суспензию и шелуху; устройство для удаления взвешенных частиц; устройство для обработки белкового напитка для подавления патогенной микрофлоры; накопительная емкость для белковой суспензии.

14. Установка по п. 13, характеризующаяся тем, что устройство для удаления взвешенных частиц из белковой суспензии выполнено в виде центрифуги, сепаратора или флотатора.

15. Установка по п. 13, характеризующаяся тем, что устройство для подавления патогенной микрофлоры выполнено в виде ультрафиолетового облучателя или установки для ультрапастеризации.

16. Установка по п. 13, характеризующаяся тем, что содержит вибрационный фильтр с размерами ячеек фильтра 0,1-0,5 мм, выполненный с возможностью дополнительного отделения из полученной суспензии оставшихся частиц шелухи.

17. Установка по п. 13, характеризующаяся тем, что в качестве устройства для разрыхления и удаления механических включений использовано вибросито с магнитным уловителем.

18. Установка по п. 17, характеризующаяся тем, что вибросито использовано с размером ячеек 6-10 мм, частотой колебаний сита от 10 до 50 Гц амплитудой 2-20 мм.

19. Установка по п. 13, характеризующаяся тем, что в качестве измельчителя использована коллоидная мельница, выполненная с возможностью измельчения исходной пивной дробины до фракции 0,1-0,9 мм, снабженная средством подачи жидкости для увлажнения сырья.

20. Установка по п. 19, характеризующаяся тем, что коллоидная мельница содержит воронкообразную загрузочную емкость, при этом для равномерного увлажнения сырья она содержит средство, выполненное в виде водяного трубопровода с отверстиями или форсунками, расположенными по окружности емкости в ее верхней части выше отметки, характеризующей максимальную загрузку емкости сырьем.

21. Установка по п. 13, характеризующаяся тем, что в качестве экстрактора использован шнековый экстрактор со скоростью вращения шнека от 2 до 8 об/мин.

22. Установка по п. 13, характеризующаяся тем, что дополнительно содержит блок концентрирования белкового напитка.

Документы, цитированные в отчете о поиске Патент 2020 года RU2739624C1

WO 2018033522 A1, 22.02.2018
СПОСОБ ПОЛУЧЕНИЯ ЭКСТРАКТА НА ОСНОВЕ ЦЕЛЬНОГО ЗЕРНА ЗЛАКОВ 2012
  • Те Бисебеке Роб
  • Волтерс Майкл
  • Марьянович Никола
  • Хаас Стефан
RU2586152C2
DE 3039430 С1, 19.08.1982
WO 2019158755 А1, 22.08.2019
US 5156877 A1, 20.10.1992
WO 2018050863 A1, 22.03.2018
US 20180199593 A1, 19.07.2018
CN 104383978 A, 04.03.2015.

RU 2 739 624 C1

Авторы

Гордилов Олег Григорьевич

Даты

2020-12-28Публикация

2020-10-19Подача