Изобретение относится к измерительной технике, а именно к лазерной интерферометрии и может быть использовано для измерения с высокой точностью линейных перемещений объектов при неизвестном профиле температуры.
Наиболее близким к предлагаемому устройству является лазерный измеритель перемещений, состоящий из оптически связанных и расположенных последовательно блока формирования лазерного одночастотного излучения, неполяризационного светоделителя, двух уголковых отражателей опорного и измерительного плечей, приемного устройства и электронно-вычислительного блока (Транспортируемый лазерный интерферометр. В.М. Епихин, Е.А. Лавров, М.М. Мазур, Ю.А. Судденок, В.Н. Шорин. - Альманах современной метрологии, Менделеево, 2015, №4, с. 54-66). Данный вариант интерферометра принят за прототип.
Недостаток такого лазерного измерителя перемещений заключается в том, что необходимо измерять метеопараметры вдоль всей трассы с высокой точностью.
Целью изобретения является разработка лазерного измерителя перемещений для измерений при неизвестном профиле температуры на трассе измерения.
Технический результат состоит в упрощении проведения и условий измерений.
Указанный технический результат достигается тем, что в лазерном измерителе перемещений применяется двухволновый дисперсионный метод определения показателя преломления воздуха [1, 2].
В известном лазерном измерителе перемещений, состоящем из оптически связанных и расположенных последовательно блока формирования лазерного излучения, неполяризационного светоделителя, двух уголковых отражателей опорного и измерительного плечей, приемного устройства, электронно-вычислительного блока, в устройстве используется источник излучения с двумя длинами волн, на уголковом отражателе опорного плеча дополнительно установлен пьезоактюатор с псевдослучайным возбуждением, а также перед приемным устройством установлен спектральный делитель пучков, причем приемное устройство выполнено в виде двух узлов, каждый из которых состоит из поляризационного светоделителя и двух фотоприемников.
Схема предлагаемого лазерного измерителя перемещений изображена на фиг. 1.
Лазерный измеритель перемещений состоит блока формирования лазерного излучения (на чертеже не оцифрован) содержащего высокостабильный лазерный излучатель 1 на основе Nd:YVO4/KTP лазера, излучающий на двух длинах волн 532 нм и 1064 нм, у которого частота генерации на длине волны 532 нм стабилизирована йодной ячейкой [3]. Поляризация на длине волны 532 нм - линейная, вертикальная, а на длине волны 1064 нм - линейная, под углом 45°. Далее расположена призма 2, четвертьволновая фазовая пластина 3 (532 нм), расширитель пучка 4, поляризационный куб 5 (532 нм), неполяризационный светоделитель 6.
С левой стороны от неполяризационного светоделителя расположен уголковый отражатель опорного плеча интерферометра (малый ретроотражатель) 7, в торце которого установлен пьезоактюатор 8 с псевдослучайным возбуждением. После неполяризационного светоделителя установлена фазовая пластина λ/4 (532 нм и 1064 нм) 9 и перископ 10. Уголковый отражатель измерительного плеча интерферометра (большой ретроотражатель) 11 размещается на измерительной трассе (передвижной каретке). С правой стороны от неполяризационного светоделителя расположен спектральный делитель пучков 12 и приемное устройство, включающее в себя поляризационные светоделители 13,14 и четыре фотодиода ФД1-ФД4. Сигналы, полученные от фотодиодов, обрабатываются электронно-вычислительным блоком (на чертеже не показан). Устройство работает следующим образом.
Линейно поляризованное излучение лазера 1 проходит через призму 2, используемую для коррекции направления луча. При помощи четвертьволновой фазовой пластины (532 нм) преобразуется в излучение с круговой поляризацией (532 нм). Далее световой пучок при помощи расширителя пучка 4 увеличивается в диаметре для обеспечения необходимой величины дифракционной расходимости пучка. Проходит через поляризационный куб 5 (532 нм), повернутом под углом 45°. Неполяризационный светоделитель 6 разделяет пучок на два пучка, в каждом из которых присутствует компонента излучения с s- и р-поляризацией. Один пучок направляется в малый ретроотражатель 7, другой - в большой ретроотражатель 11. Для обеспечения возможности регистрации счета интерференционных полос для двух длин волн в измерительном плече интерферометра установлена фазовая пластина λ/4 (532 нм и 1064 нм) 9, обеспечивающая фазовый сдвиг π/2 между компонентами излучения с s- и р-поляризацией. Световой пучок, распространяющийся в измерительном плече интерферометра, после отражения от большого ретроотражателя через перископ 10 снова попадает в неполяризационный светоделитель 6, где происходит его интерференция с пучком света, распространяющимся в малом ретроотражателе. Далее при помощи спектрального делителя пучков 12 интерферировавшие пучки разделяются на два пучка - 1064 нм и 532 нм. При поляризационном разделении интерферировавших пучков светоделителями 13,14 четырьмя фотодиодами ФД1-ФД4 регистрируются четыре интерферограммы по две для каждой длины волны, сдвинутые по фазе на π/2. Реверсивный счет интерференционных полос с учетом этих сигналов позволяет учитывать истинное направление движения большого ретроотражателя, а также исключать возможные вибрации и шумы из счета интерференционных полос.
В торце малого ретроотражателя находится устройство, создающее перемещения на величину деформации пьезоэлемента - пьезоактюатор. Пьезоактюатор используется в полосе частот от 10 до 150 Гц с амплитудой 2-3 длины волны лазерного излучения. Измерения перемещений считываются от 100 до 10000 раз, что позволяет при обработке результатов измерений при накоплении получить величины с дробными значениями от счета интерференционных полос. При псевдослучайном возбуждении это перемещение будет также псевдослучайным. Как следствие, СКО измерений перемещений уменьшается в отсчетов, что позволяет получить разрешение по измерению перемещений до 10-4 λ, а СКО измерений перемещений от 10-2 λ до 2⋅10-1 λ.
С помощью предложенного лазерного измерителя перемещений снижаются требования к условиям проведения измерений по сравнению с прототипом.
Этим достигается поставленный технический результат.
Список используемой литературы
1. М.Т. Прилепин. Труды ЦНИИГАиК, вып. 114, 1957, стр. 127.
2. М.Т. Прилепин. Геодезия и аэрофотосъемка. Изв. ВУЗов, 1957, вып. 2.
3. М.Н. Скворцов, М.В. Охапкин, А.Ю. Невский, С.Н. Багаев. «Оптический стандарт частоты на основе Nd:YAG - лазера, стабилизированного по резонансам насыщенного поглощения в молекулярном йоде с использованием второй гармоники излучения.» КЭ, т. 34, №12, 2004, с. 1101-1106.
название | год | авторы | номер документа |
---|---|---|---|
Лазерный интерферометр для измерения линейных перемещений объекта | 1991 |
|
SU1793204A1 |
ДВУХКАНАЛЬНАЯ ИНТЕРФЕРОМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ИССЛЕДОВАНИЯ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ | 2016 |
|
RU2638582C1 |
ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ ОБЪЕКТОВ | 2020 |
|
RU2745341C1 |
Лазерный интерферометр | 1991 |
|
SU1825968A1 |
Интерферометр для измерения линейных перемещений объектов | 1989 |
|
SU1800259A1 |
Интерференционное устройство для измерения линейных перемещений объекта | 1990 |
|
SU1809302A1 |
Способ создания интерференционных полей с фазовым сдвигом от 0 до 180 @ | 1990 |
|
SU1768957A1 |
Интерферометр для измерения линейных перемещений объектов | 1989 |
|
SU1800260A1 |
СПОСОБ ИЗМЕРЕНИЯ ИМПУЛЬСНОГО ДАВЛЕНИЯ СРЕДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2012 |
|
RU2497090C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОРЕЛЬЕФА ОБЪЕКТА И ОПТИЧЕСКИХ СВОЙСТВ ПРИПОВЕРХНОСТНОГО СЛОЯ, МОДУЛЯЦИОННЫЙ ИНТЕРФЕРЕНЦИОННЫЙ МИКРОСКОП ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2001 |
|
RU2181498C1 |
Изобретение относится к измерительной технике, а именно к лазерной интерферометрии, и может быть использовано для измерения с высокой точностью линейных перемещений объектов при неизвестном профиле температуры. Лазерный измеритель перемещений состоит из оптически связанных и расположенных последовательно блока формирования лазерного излучения, неполяризационного светоделителя, двух уголковых отражателей опорного и измерительного плечей, приемного устройства и электронно-вычислительного блока. В устройстве используется источник излучения с двумя длинами волн, на уголковом отражателе опорного плеча дополнительно установлен пьезоактюатор с псевдослучайным возбуждением, а также перед приемным устройством установлен спектральный делитель пучков, причем приемное устройство выполнено в виде двух узлов, каждый из которых состоит из поляризационного светоделителя и двух фотоприемников. Технический результат заключается в обеспечении возможности упрощении проведения измерений и в снижении требований к условиям их проведения. 1 ил.
Лазерный измеритель перемещений, состоящий из оптически связанных и расположенных последовательно блока формирования лазерного излучения, неполяризационного светоделителя, двух уголковых отражателей опорного и измерительного плечей, приемного устройства, электронно-вычислительного блока, отличающийся тем, что в устройстве используется источник излучения с двумя длинами волн, на уголковом отражателе опорного плеча дополнительно установлен пьезоактюатор с псевдослучайным возбуждением, а также перед приемным устройством установлен спектральный делитель пучков, причем приемное устройство выполнено в виде двух узлов, каждый из которых состоит из поляризационного светоделителя и двух фотоприемников.
В.М | |||
Епихин и др | |||
"ТРАНСПОРТИРУЕМЫЙ ЛАЗЕРНЫЙ ИНТЕРФЕРОМЕТР", Альманах современной метрологии, Менделеево, 2015, N4, стр | |||
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба | 1919 |
|
SU54A1 |
Устройство для измерения перемещений | 1981 |
|
SU1017915A1 |
Устройство для дистанционного измерения расстояний | 1980 |
|
SU938660A1 |
Телефонная трансляция с местной цепью для уничтожения обратного действия микрофона | 1924 |
|
SU348A1 |
JP 3037949 B1, 08.05.2000. |
Авторы
Даты
2021-02-09—Публикация
2020-06-08—Подача