Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов Российский патент 2021 года по МПК G01R27/26 

Описание патента на изобретение RU2744158C1

Изобретение относится к области радиоизмерений параметров поглощающих материалов на СВЧ в широкой полосе частот и может быть использовано в производстве существующих и новых материалов, а также для контроля электрических параметров диэлектрической проницаемости и тангенса угла диэлектрических потерь, магнитной проницаемости и тангенса угла магнитных потерь.

Известен способ для измерения диэлектрической проницаемости косвенным методом. [Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз, 1963. - 120 с.]. Измерения проводятся в два этапа, вначале производят измерение резонансной частоты и добротности полого разъемного перестраиваемого цилиндрического резонатора, у которого подвижный поршень является одной из торцевых стенок резонатора и играет роль эталонного короткозамыкателя. От СВЧ-генератора по волноводу подается зондирующая электромагнитная волна, производят измерение резонансной частоты и добротности полого резонатора. Затем в цилиндрический резонатор помещают образец измеряемого материала на поршень и также производят измерение резонансной частоты и добротности резонатора с материалом. Информация о параметрах материала заключается в резонансной частоте и добротности резонатора. Обработка результатов производится по методике, изложенной [Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз, 1963. - 117 с.].

Недостатком описанного способа являются большие ошибки измерения ε и tgδε для материалов, имеющих одновременно большие значения диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tgδε, характеризующиеся большими коэффициентами отражения от образца. А также разъемный цилиндрический резонатор перестраивается в достаточно узкой полосе частот.

Известен способ для измерения диэлектрической проницаемости косвенным методом, включающий СВЧ-генератор, измерительное устройство комплексного коэффициента отражения, открытый на конце прямоугольный волновод, заканчивающийся фланцем, эталонный короткозамыкатель и измеряемый материал, использующийся в качестве замыкающей волновод пластины. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз, 1963. - 192 с.]. Измерения проводятся в два этапа, вначале к волноводному фланцу подключается эталонный короткозамыкатель и производится калибровка установки, затем к волноводному фланцу взамен короткозамыкателя крепится исследуемый плоский образец диэлектрика. От СВЧ-генератора по волноводу подается зондирующая электромагнитная волна. Информация о параметрах материала заключается в амплитудах и фазах отраженных волн (комплексный коэффициент отражения). Обработка результатов производится по методике, изложенной [Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. -М.: Физматгиз, 1963. - 192 с.].

Недостатком описанного способа является низкая точность измерения комплексной диэлектрической проницаемости. Большие ошибки измерения связаны с тем, что образец имеет большие значения диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tgδε, при которых |Г|→1, а ϕ→180° из-за большой крутизны зависимости ε(ϕ), tgδε (ϕ) в области ϕ→180°. Из-за отклонения плоскости прилегания образца к волноводу от плоскости отражения зондирующей электромагнитной волны появляется методическая ошибка, величина которой по фазе недопустимо большая.

Известен способ измерения диэлектрической проницаемости с использованием образцов с кратными толщинами, в котором сначала измеряют комплексный коэффициент отражения от образца одной толщины, а затем от образца с толщиной вдвое больше. [Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз, 1963. - 198 с.].

Недостатком способа является необходимость в изготовлении двух образцов с определенными толщинами.

Известен способ измерения диэлектрической проницаемости, включающий измерение комплексного коэффициента отражения от исследуемого образца, полностью заполняющего поперечное сечение волновода, за которым располагается отражатель один раз на расстоянии от задней стенки исследуемого образца, а второй раз на расстоянии . [Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз, 1963. - 200 с.].

Недостатком способа является то, что необходимо дополнительно с высокой точностью измерять расстояние от образца до отражателя, что особенно затруднительно при увеличении частоты.

Наиболее близким техническим решением к предлагаемому изобретению является способ измерения комплексных диэлектрической и магнитной проницаемости волноводным методом, включающий измерения комплексных коэффициентов отражения и передачи от измерительной секции прямоугольного волновода, сечение которой заполнено исследуемым материалом, а зазоры между образцом и широкой стенкой волновода заполнены материалом с хорошей электропроводностью (прототип) [Пархоменко М.П., Каленов Д.С. Еремин И.С., Федосеев Н.А., Колесникова В.М., Баринов Ю.Л. Волноводный метод для измерения комплексной диэлектрической проницаемости материалов в сантиметровом и миллиметровом диапазонах. - Электронная техника, Сер. 1, СВЧ-техника, вып. 1(540), 2019. - 20 с.]. Измерения проводятся в два этапа, вначале производится калибровка установки, затем в волноводный тракт вставляют секцию волновода с исследуемым материалом, при этом длина секции должна точно равняться длине образца. От СВЧ-генератора по волноводу подается зондирующая электромагнитная волна. Информация о параметрах материала заключается в комплексных коэффициентах отражения и передачи измерительной секции с образцом исследуемого материала. Обработка результатов производится по методике, изложенной [Nicolson A.M. Measurement of intrinsic properties of materials by time domain techniques / A.M. Nicolson and G.F. Ross // IEEE Trans. - 1970 - Vol. IM-19, No 4. - P. 377-382. Weir W.B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies / W.B. Weir // Proceedings of the IEEE - 1974 - Vol. 62, Nol. - P. 33-36.].

Недостатком способа является необходимость заполнения проводящей пастой воздушные зазоры между широкой стенкой волновода и исследуемым материалом, имеющим одновременно большие значения диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tgδε. Неоднородное заполнение воздушных зазоров пастой на основе серебра с удельной проводимостью 2*106 См/м приводит к инструментальным и методическим погрешностям и может достигать 40% и более при определении ε и tgδε. А также после проведения измерений требуется очистка волновода и исследуемого образца от остатков проводящей пасты.

Техническим результатом предлагаемого изобретения является повышение точности и оперативности измерений комплексных диэлектрической и магнитной проницаемости поглощающих материалов в широкой полосе частот.

Технический результат достигается тем, что способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов включает заполнение волноводной секции исследуемым материалом, зондирование электромагнитной волной, измерение комплексных коэффициентов отражения и передачи и обработку результатов измерения. Исследуемый материал выполняют в виде параллелепипеда с боковым ребром длинной а, определяемой из соотношения где ε - диэлектрическая проницаемость материала, μ - магнитная проницаемость материала, электрическая длина Lλ, секции волновода с материалом не более λ/4. При этом дополнительно выполняют электродинамическое моделирование волновода с параметризованными частотно зависимыми значениями ε', ε'', μ', μ'' материала, при котором оптимизируют результаты в полосе частот, и сравнивают измеренные и расчетные коэффициенты отражения и передачи.

В прямоугольном волноводе распространяется только волна типа Н10. Волноводная секция, заполненная исследуемым материалом, имеет электрическую длину Lλ≤А/4 для обеспечения однозначности определения ε', ε'', μ', μ'' материала.

Длина бокового ребра исследуемого материала определяется из соотношения, которое позволяет существенно расширить частотный диапазон измерения характеристик материала волноводным методом, за счет смещения резонансов, возникающих в исследуемом материале, в сторону больших частот, за границу пропускания волновода.

Методическая погрешность, связанная с воздушным зазором, образованным между широкой стенкой волновода и боковым ребром параллелепипеда, существенно влияет на результаты измерений. Аналитическое решение предполагает отсутствие воздушного зазора, что в реальности неразрушающим способом добиться нельзя. Поэтому данная погрешность особенно заметна при измерении материалов с большими диэлектрической и магнитной проницаемостями. Это связано со значительным скачком напряженностей электрического поля при переходе из исследуемого материала в воздушный зазор.

Обработка результатов измерения проводится в программе электродинамического моделирования, с учетом воздушного зазора, который можно делать любой высоты, что позволяет удобно расположить исследуемый материал в волноводной секции и оперативно определить параметризованные частотнозависимые значения ε', ε'', μ', μ''. Измеренные коэффициенты отражения и передачи импортируются в программу электродинамического моделирования и сравниваются с расчетными. Процедура оптимизации симплексным методом Нелдера-Мида сходится к истинному значению комплексных диэлектрической и магнитной проницаемостей, сравнивая расчетные и измеренные коэффициенты отражения и передачи. Это позволяет минимизировать методическую ошибку, связанную с воздушным зазором, и повысить точность измерения волноводным способом материалов с большими комплексными диэлектрической и магнитной проницаемостями.

Изобретение поясняется чертежом.

На фиг. 1 представлен прямоугольный волновод с волноводной секцией, в которой размещен прямоугольный параллелепипед из исследуемого материала, где:

- прямоугольный волновод 1,

- исследуемый материал 2,

- волноводная секция с исследуемым материалом 3,

- воздушный зазор 4.

На фиг. 2 график модуля |S| коэффициентов отражения и передачи исследуемого материала от частоты, где:

S1,1 - коэффициент отражения расчетный,

S2,1 - коэффициент передачи расчетный,

S11 - коэффициент отражения измеренный,

S21 - коэффициент передачи измеренный.

Пример

Секция 3 с измеряемым материалом 2, выполненным в виде прямоугольного параллелепипеда с боковым ребром 9.97 мм, электрической длины 9,7 мм вставлена в прямоугольный волновод 1 сечением 23*10 мм. От СВЧ-генератора по прямоугольному волноводу 1 подается зондирующая электромагнитная волна Н10, которая доходит до секции 3, часть отражается от исследуемого материала 2, который имеет диэлектрическую проницаемость ε ~ 24 и tgδε ~ (0.9-0.1) на частоте 10 ГГц, и движется в обратном направлении, а другая часть проходит через исследуемый материал 2 и движется на второй порт векторного анализатора цепей, преобразуя информацию об амплитудах и фазах этих сигналов в комплексные коэффициенты отражения и передачи секции 3 (S-параметры). Полученные S-параметры импортируются в программу электродинамического моделирования CST Studio. В данной программе моделируется секция 3, в которой учитывается воздушный зазор 4 равный 300 мкм. Параметры материала 2 в программе электродинамического моделирования задаются параметризованными частотнозависимыми значениями ε'=10, ε''=0.08 μ'=1, μ''=0.2. С помощью процедуры оптимизации симплексным методом Нелдера-Мида, встроенным в программу электродинамического моделирования, определяются истинные значения комплексных диэлектрической и магнитной проницаемостей независимо от стартовых значений этих параметров, сравнивая расчетные и измеренные коэффициенты отражения и передачи для получения качественного их совпадения (см. фиг. 2). В полосе частот 8-12 ГГЦ были получены следующие результаты:

Существующая обработка результатов измерений с применением алгоритма Nicolson-Ross-Weir, учитывающая воздушный зазор 4, в данном случае дает погрешность 60%. Предлагаемый способ обработки результатов обеспечивает погрешность ≤2%.

Предлагаемый способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов упрощает измерения и позволяет оперативно получить полную и точную информацию о характеристиках материала в широкой полосе частот (40%). Методическая погрешность данного способа составляет 2%, что позволяет оперативно контролировать параметры поглощающих материалов при их производстве и учитывать с высокой точностью свойства таких материалов при проектировании СВЧ изделий из них.

Похожие патенты RU2744158C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ БОЛЬШИХ ЗНАЧЕНИЙ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ СИЛЬНО ПОГЛОЩАЮЩИХ МАТЕРИАЛОВ НА СВЧ 2001
  • Дмитриенко Г.В.
  • Трефилов Н.А.
RU2199760C2
СПОСОБ ИЗМЕРЕНИЯ БОЛЬШИХ ЗНАЧЕНИЙ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ИМПЕДАНСНЫХ МАТЕРИАЛОВ НА СВЧ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Дмитриенко Г.В.
  • Трефилов Н.А.
RU2231078C1
СПОСОБ ОПРЕДЕЛЕНИЯ БОЛЬШИХ ЗНАЧЕНИЙ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ИМПЕДАНСНЫХ МАТЕРИАЛОВ 2001
  • Дмитриенко Г.В.
  • Трефилов Н.А.
RU2194285C1
Способ измерения комплексной диэлектрической проницаемости материала в диапазоне СВЧ 2022
  • Чони Юрий Иванович
  • Лаврушев Владимир Никифорович
  • Авксентьев Александр Анатольевич
RU2797142C1
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ НИЗКОИМПЕДАНСНЫХ МАТЕРИАЛОВ НА СВЧ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Дмитриенко Г.В.
  • Трефилов Н.А.
RU2253123C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ НИЗКОИМПЕДАНСНЫХ МАТЕРИАЛОВ НА СВЧ С ПОМОЩЬЮ КОАКСИАЛЬНОГО РЕЗОНАТОРА 2007
  • Дмитриенко Герман Вячеславович
  • Трефилов Николай Александрович
RU2326392C1
Способ определения сверхвысокочастотных параметров материала в полосе частот и устройство для его осуществления 2018
  • Крылов Виталий Петрович
  • Чирков Роман Александрович
  • Забежайлов Максим Олегович
RU2688588C1
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Никулин Сергей Михайлович
  • Хилов Владимир Павлович
  • Малышев Илья Николаевич
RU2548064C1
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛЬНЫХ ТЕЛ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Турковский Иван Иванович
RU2331894C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР 2015
  • Усанов Дмитрий Александрович
  • Скрипаль Александр Владимирович
  • Пономарев Денис Викторович
  • Латышева Екатерина Викторовна
RU2622600C2

Иллюстрации к изобретению RU 2 744 158 C1

Реферат патента 2021 года Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов

Изобретение относится к области радиоизмерений параметров поглощающих материалов на СВЧ. Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов включает заполнение волноводной секции исследуемым материалом, зондирование электромагнитной волной, измерение комплексных коэффициентов отражения и передачи и обработку результатов измерения. Исследуемый материал выполняют в виде параллелепипеда с боковым ребром длинной а, определяемой из соотношения где ε - диэлектрическая проницаемость материала, μ - магнитная проницаемость материала, электрическая длина Lλ секции волновода с материалом не более λ/4. При этом дополнительно выполняют электродинамическое моделирование волновода с параметризованными частотно зависимыми значениями ε', ε'', μ', μ'' материала, при котором оптимизируют результаты в полосе частот, и сравнивают измеренные и расчетные коэффициенты отражения и передачи. Технический результат - повышение точности и оперативности измерений комплексных диэлектрической и магнитной проницаемости поглощающих материалов в широкой полосе частот. 1 пр., 2 ил.

Формула изобретения RU 2 744 158 C1

Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов, включающий заполнение волноводной секции исследуемым материалом, зондирование электромагнитной волной, измерение комплексных коэффициентов отражения и передачи и обработку результатов измерения, отличающийся тем, что материал выполняют в виде параллелепипеда с боковым ребром длинной а, определяемой из соотношения где ε - диэлектрическая проницаемость материала, μ - магнитная проницаемость материала, электрическая длина Lλ секции волновода с материалом не более λ/4, при этом дополнительно выполняют электродинамическое моделирование волновода с параметризованными частотно зависимыми значениями ε', ε'', μ', μ'' материала, при котором оптимизируют результаты в полосе частот, и сравнивают измеренные и расчетные коэффициенты отражения и передачи.

Документы, цитированные в отчете о поиске Патент 2021 года RU2744158C1

Пархоменко М.П
и др
Волноводный метод для измерения комплексной диэлектрической проницаемости материалов в сантиметровом и миллиметровом диапазонах
- Электронная техника, Сер
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Алексеенков В.И
и др
ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ДИЭЛЕКТРИКОВ В ДИАПАЗОНЕ СВЧ НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ И

RU 2 744 158 C1

Авторы

Галдецкий Анатолий Васильевич

Богомолова Евгения Александровна

Алексеенков Владимир Иванович

Васильев Владимир Иванович

Коломин Виталий Михайлович

Немогай Ирина Куртовна

Даты

2021-03-03Публикация

2020-05-19Подача