Способ ликвидации разливов сжиженного природного газа или сжиженного углеводородного газа гибридной пеной и система для его осуществления Российский патент 2021 года по МПК A62C3/02 A62C31/00 

Описание патента на изобретение RU2744719C1

Область техники

Изобретение относится к технике ликвидации последствий технологических и транспортных аварий, для предотвращения возгораний, взрывов, купирования и тушения пожаров и ликвидации последствий аварийных и технологических разливов сжиженного природного газа (СПГ) или сжиженного углеводородного газа (СУГ), совместно - сжиженного газа (СГ), и может быть использовано в энергетике, транспорте, газодобывающей, газоперерабатывающей и химической промышленности.

Уровень техники

Методы сжижения газообразных углеводородов разработаны более 80 лет назад, первый промышленный морской метановоз для перевозки сжиженного метана построен в начале 50-х годов, а Великобритания впервые перешла на применение в качестве энергоносителя импортного сжиженного метана в 1964 г.

Начало 3-го тысячелетия ознаменовалось широким освоением и крупнотоннажным применением криогенных технологий сжижения углеводородных горючих (СУГ) газов (пропан-бутановой смеси С3Н8/C4H10) и сжиженного природного газа (СПГ) (метана СН4) и их широким использованием в промышленно-энергетических целях.

Для мировой энергетики это значительно упростило транспортировку энергоресурсов в виде сжиженных газов вместо транспортировки нефти и мазута, упростило хранение и транспортировку крупных, средних и малых количеств горючего (от стационарных и транспортных емкостей СУГ или СПГ), объемом от 20-40 литров до морских танкеров с резервуарами объемом на 200.000 м3 и более.

Суммарная вместимость судов для перевозки СПГ увеличилась с 32 млн м3 в 2007 г. до 78 млн м3 в 2011 г, то есть почти в 2,5 раза. С 2007 по 2012 г грузооборот СПГ в мире возрос более чем в 2 раза к 2015 г. количество морских терминалов импорта СПГ тоже удвоится и достигнет 130 [Лавриненко Г.К., Копытин А.В. Криогенные комплексы производства и отгрузки СПГ, его приема, хранения и регазации в системе международной торговли. Ж. «Технические газы» №3 2010 г.].

На начало 2020 г.в мире было около 500 танкеров-газовозов, причем около 50 - построено в 2019 г, которые спсособны ежегодно перевозить около 400 млрд. м3 сжиженных углеводородных горючих газов. Это более 200 миллиардов тонн сжиженного газа ежегодно!

Такая интенсивная прокачка, перевалка и перевозка миллионов тонн пожаровзрывоопасного груза в принудительно сжиженном, термодинамически неравновесном, неустойчивом состоянии, неизбежно связана с повышенным риском аварий, истечения и пролива сжиженного газа разгерметизацией продукта и возникновением пожаровзрывоопасных ситуаций.

Промышленные крупномасштабные и многотоннажные работы и перевозки (и по суше и по морю) ведутся с все возрастающими темпами и объемами производства, хранения и транспортировки и СУГ и СПГ.

Правительством России в настоящее время поставлена задача для российской промышленности увеличения масштабов производства и экспорта сжиженных природных газов (СПГ) в 5 раз за предстоящие 5 лет [Путин В.В. Безопасность ТЭК. Сер. Промышленная и Пожарная Безопасность. Разд. Общество. Государство. Промышленная безопасность - важнейшее условие развития ТЭК России. №1 (3) 2013 г. с.10].

Этот колоссальный научно-технический прогресс в решении проблем хранения и транспортировки сжиженных энергоресурсов обострил старые и обусловил появление совершенно новых проблем обеспечения пожаровзрывобезопасности этого огромного и технически чрезвычайно сложного энергохозяйства.

Вместе с тем, в настоящее время в подавляющем большинстве официальных рекомендаций предлагается использование традиционных для легковоспламеняющихся жидкостей (ЛВЖ) и горючих жидкостей (ГЖ), но недопустимых к использованию при тушении пожаров СУГ и СПГ порошковых и водяных методов пожаротушения, без учета кардинальных, принципиальных отличий СУГ и СПГ от ЛВЖ - ГЖ, специфических теплофизических и термодинамических особенностей СУГ и СПГ при «нормальных условиях» Ро=101,3 кПа и То=20°С и реальных масштабов (размеров) и параметров аварий - единичные объемы резервуаров хранения СУГ возросли в 5-10 раз, а СПГ в 10-15 и более раз по сравнению с резервуарами хранения и транспортировки ЛВЖ-ГЖ и, соответственно, вероятная площадь пожара возросла в 10-15 и более раз (до 5-10 и более тысяч квадратных метров!).

Известно, что СУГ и СПГ и их пары практически не растворяются в воде, а теплота, подводимая к СУГ распыленной водой, а тем более, водяным паром, в 5-10 раз интенсифицируют (ускоряют и усиливают) испарение СУГ при контакте с ними., и что высота пламени при горении разлившегося сжиженного газа в 2-2,5 раза больше среднего диаметра площади горения, вместо привычных для пожаров ЛВЖ-ГЖ 0,8-1,2 среднего диаметра, а вода не пригодна для тушения пожаров СПГ, т.к. она резко усиливает испарение СПГ, по оценкам авторов, в 5-10 раз больше чем при пленочном кипении СПГ и при пожаре, что приводит к объемному кипению взрывного характера, как при вскипании и выбросе некоторых ГЖ на пожаре.

По этой причине нельзя подавать воду на тушение или локализацию зоны испарения при авариях СУГ и СПГ, а при интенсивности подачи Jв.=1 л/м2 распыленной воды в объеме СПГ происходит объемное вскипание жидкого метана, так как плотность воды почти в 2,5 раза больше плотности жидкого метана (1000/426=2,347), тяжелые капельки воды тонут в жидком метане.

В известных в России технологиях пожаротушения СУГ и СПГ рекомендуют применение импортных специальных фторсодержащих пленкообразующих пенообразователей, запрещенных к применению в целях пожаротушения по соображениям их экологической опасности, практически во всем мире, в том числе, в США, в Канаде, в Европе, странах Азиатско-Тихоокеанского региона, Австралии и др.

Известно также, что площадь тушения лучшими пожарными машинами порошкового тушения, с максимальным секундным расходом огнетушащего порошка и максимальной дальностью подачи порошковой струи не более 30-40 м в безветренную погоду и без учета конвективных потоков воздуха вокруг пламени пожара и самого конвективного потока продуктов сгорания над площадью пожара, лежит в пределах 25-40 м2, а подача огнетушащих порошков на поверхность сжиженного газа приводит к резкому его вскипанию, к распространению по сторонам пламени потоками воздуха, и в конечном итоге к усилению горения газа.

Известны способы тушение пожаров в хранилищах сжиженных горючих газов путем создании там среды, не поддерживающей горения, которые считаются одним из наиболее эффективных способов пожарной защиты хранилищ сжиженных горючих газов, поскольку они не только быстро подавляют пламя в емкостях, но и предотвращают взрыв при накоплении в хранилище горючих газов и паров. Для объемного пожаротушения используют вещества, которые могут распространяться в атмосфере защищаемого хранилища и создавать в каждом его элементе огнетушащую концентрацию. В качестве таковых обычно применяют инертные газы - разбавители (CO2, Ar, N2 и др.).

Известен способ тушения пожара в хранилище со сжиженным горючим газом, включающий заполнение инертным газом (например, азотом) всего объема хранилища до концентрации, исключающей горение горючего газа [4].

Известно устройство для реализации этого способа, содержащее баллоны с инертным газом и магистралью, подстыкованной к объему хранилища, на которой установлена запорная арматура. При обнаружении пожара запорная арматура включает подачу в хранилище инертного газа из баллонов, создавая там концентрацию горючего газа ниже предела его воспламенения [Справочник "Пожарная безопасность. Взрывоопасность". М.: Химия 1987 г., с.134-135, 201-203.].

Недостатком такого технического решения (как способа, так и устройства) является его невысокая эффективность, особенно когда горючий газ имеет широкие пределы воспламеняемости. В этом случае требуются большие количества инертного газа-разбавителя, а "накачка" им объема (отсека), где происходит пожар, требует определенного времени.

Возможности пожаротушения инертным газом значительно расширяются при использовании сжиженных инертных газов. Так, например, в техническом решении [RU 2131755, МКИ А62С 27/00 - 1999 г], тушение осуществляется охлажденным азотом, газифицированным из жидкого. Глубокое охлаждение газа-разбавителя существенно повышает эффективность метода подавления пожара инертным газом. Последнее связано с тем, что на скорость химической реакции гораздо сильнее влияет температура реагирующих газов, чем их концентрация.

В устройстве [RU 2131755, МКИ А62С 27/00 - 1999] при обнаружении пожара открывается запорная арматура на пожарной магистрали, соединенной с криогенной емкостью, заполненной жидким азотом. Жидкий азот по этой магистрали поступает в газожидкостный теплообменник, где газифицируется за счет тепла окружающего воздуха. Полученный таким образом охлажденный азот направляют на подавление пламени.

Известен способ тушения пожара в объеме с емкостями со сжиженным горючим газом, включающий заполнение при пожаре объема охлажденным инертным газом, согласно которому инертный газ перед подачей в объем, где происходит пожар, охлаждают сжиженным горючим газом, одновременно газифицируя последний и выбрасывая его в окружающую среду. Способ тушения пожара реализуется в системе тушения пожара в объеме с емкостями со сжиженным горючим газом, содержащей источник инертного газа, расположенный вне объема и соединенный с этим объемом магистралью подачи инертного газа с запорной арматурой, в которую введен газожидкостный теплообменник, расположенный вне объема, выход по жидкости которого соединен с магистралью сброса в окружающую среду, а вход по жидкости соединен с магистралью выдачи сжиженного газа, вход по газу этого теплообменника подстыкован к магистрали подачи инертного газа, а его выход по газу сообщен с объемом. Такое решение позволяет использовать "холод", запасенный в сжиженном горючем газе, и за счет "глубокого" охлаждения инертного газа, подавляющего пожар, существенно сократить его требуемое количество [RU 2256472, МКИ А62С 3/02 Опубл. 20.07.2005.].

Использование в системах пожаротушения жидкого азота имеет следующие недостатки:

- ограниченность времени хранения криогенного тушащего средства (жидкого азота) и необходимость регулярного пополнения его запасов;

- проблематичность использования жидких инертных газов на транспортных средствах;

- повышенная взрывоопасность криогенных систем, в том числе и систем хранения жидких инертных газов. Криогенная система пожаровзрывобезопасности (ПВБ) сама в этом случае становится взрывоопасной;

- сравнительная сложность конструкции криогенных систем и регламента их обслуживания;

- большие габариты теплообменника для газификации жидкого азота, что связано с необходимостью иметь высокий расход азота при низком (атмосферном) давлении нагревающего азот воздуха,

- возможность применения инертных газов преимущественно в закрытых объемах и сложность, а часто и невозможность, их применения при аварийных разливах на открытых обычно стесненных пространствах больших объемов сжиженного газа при их транспортировке, хранении и использовании.

Известно устройство для пожаротушения горючей жидкости в резервуаре, состоящее из генератора низкократной пены и пенной емкости. Генератор пены выполнен в виде корпуса с соплом для подачи в корпус раствора пенообразователя и с отверстием для подвода в корпус воздуха. Сопло выполнено многоструйным. В корпусе генератора пены находится камера смешения, вход которой установлен напротив сопла, а выход соединен с пенной емкостью, имеющей выход для пены в резервуар в виде, по меньшей мере, двух щелеобразных отверстий с возможностью подачи плоской веерообразной струи одним из них на горючую жидкость в резервуаре, а другим - на внутреннюю стенку резервуара. Между выходом для пены из пенной емкости в резервуар и камерой смешения имеется герметизирующая мембрана, выполненная с возможностью разрушения при пожаротушении [RU 2232041, МКИ А62С 3/06 Опубл. 10.07.04].

Недостатком устройства RU 2232041 является ненадежность конструкции, т.к. при взрыве паровоздушной смеси в резервуаре происходит разрушение пенной емкости, что приведет к значительному увеличению промежутка времени между началом возгорания и ликвидацией пожара. Возникает опасность разрушения резервуара и, как следствие, разлива горючих продуктов на больших площадях, их возгорания, а также большая вероятность возникновения пожара в соседних резервуарах.

Известен способ защиты резервуаров с легковоспламеняющимися и горючими жидкостями от взрыва и при пожаре путем подачи из узла ввода сверху на внутреннюю стенку резервуара по меньшей мере двух струй огнетушащего вещества - пены низкой кратности, согласно которому огнетушащее вещество подают горизонтальными струями по стенке резервуара в одну сторону или одновременно по часовой и против часовой стрелки, таким образом, чтобы оси струй не пересекались, при этом огнетушащее вещество подают с напором, обеспечивающим образование на стенке резервуара кольца из огнетушащего вещества, причем в качестве огнетушащего вещества используют пену низкой кратности или воду. При этом в качестве огнетушащего вещества дополнительно используют огнетушащий порошок, инертный газ, водяной пар, в резервуар подают один или одновременно несколько видов огнетушащих веществ [RU 2334532, МКИ А62С 3/06 Опубл. 27.09.2008].

Устройство для осуществления способа по RU 2334532, содержащее узел ввода огнетушащего вещества с выходом в резервуар на одном конце и с крышкой на другом и насадок для подачи огнетушащего вещества, дополнительно содержит один или более насадков для подачи огнетушащих веществ, закрепленных горизонтально на одной или двух сторонах узла ввода под углом, выбранным из условия направленности струй огнетушащих веществ по стенке резервуара; оси насадков, закрепленных на противоположных сторонах узла ввода, расположены в параллельных горизонтальных плоскостях; узел ввода выполнен из материала с прочностными характеристиками, превышающими прочностные характеристики верхнего пояса резервуара, а крыша резервуара, крышка узла ввода и ее крепление к узлу выполнены из материала с разрушающими характеристиками ниже разрушающих характеристик стенок узла ввода и верхнего пояса резервуара. При этом в качестве насадков для подачи огнетушащих веществ используют генераторы пены, насадки подачи пены, воды, огнетушащего порошка, инертного газа, водяного пара, генераторы пены и пенные насадки размещены в корпусе с отверстием для подсоса воздуха, оно дополнительно содержит один или более узлов ввода, а узел ввода выполнен в форме призмы с равнобедренной трапецией в основании, угол наклона боковых граней призмы, на которых закреплены насадки выбран из условия направления струй по стенке резервуара.

Недостатками данной технологии является невозможность ее применения для предотвращения возгорания (купирования), тушения пожаров и ликвидации последствий пожаров разливов СУГ и СПГ.

Известны разработанные ВНИИПО МВД России, отделом пожарной охраны объектов ГУГПС МВД России и Центром стратегических исследований гражданской защиты МЧС России рекомендации «Обеспечение пожарной безопасности объектов хранения и переработки сжиженных углеводородных газов» для противопожарной защиты обвалованного изотермического резервуара [«Обеспечение пожарной безопасности объектов хранения и переработки сжиженных углеводородных газов». Рекомендации. http://files.stroyinf.ru/Data2/1/4293831/4293831044.htm].

Система противопожарной защиты изотермического резервуара согласно данных рекомендаций включает в себя:

- применение стационарных установок водяного орошения и стационарных лафетных стволов для защиты от теплового воздействия при пожарах наружных сооружений комплекса хранения СУГ;

- паровые или водяные завесы по периметру обвалования для ограничения распространения паров СУГ при его проливах и утечках путем их увлечения распыленными струями воды или водяного пара вверх и разбавления воздухом до концентраций ниже НКПР, которые должны включаться сразу после возникновения аварии автоматически от сигнализаторов довзрывоопасных концентраций газа;

- установки порошкового пожаротушения на базе сухих порошков бикарбоната натрия или бикарбоната калия для тушения пламени СУГ на изотермических резервуарах в местах возможных утечек СУГ (зоны размещения штуцеров, клапанов, оборудования рабочих площадок, мест установки отсекающей и другой арматуры, насосная станция);

- автоматические стационарные установки пенотушения для противопожарной защиты обвалований резервуаров с СУГ (быстрой локализации пожара и снижения факела пламени за счет изолирующего слоя пены) на основе пеногенераторов с повышенной производительностью высокократной пены с кратностью пены 700-800 без принудительного наддува воздуха от электровентилятора.

Стационарная установка пенотушения согласно данных рекомендаций включает в себя:

- систему и датчики обнаружения и оповещения о пожаре или разливе СУГ в обваловании;

- устройство включения системы подачи воды;

- устройство дозировки пенообразователя в линию сухотруба;

- емкости с концентратом синтетического пенообразователя, пригодного для получения высокократной пены;

- пеногенераторы высокократной пены, установленные на краю обвалования.

Для защиты открытого технологического оборудования в обваловании (запорная арматура, трубопроводы, люки в резервуары) пеногенераторы располагают вдоль края обвалования, с тем, чтобы площадь обвалования была заполнена высокократной пеной с высотой слоя, покрывающего все технологическое оборудование, но не менее 2 м, в течение 10 мин.

Техническими недостатками указанных способа и устройства является применимость только для малотоннажных стационарных хранилищ СУГ, поскольку дальность подачи высокократной пены с кратностью 600-700 обычно составляет всего около 3 м, что обуславливает неэффективность и зачастую невозможность использования этих решений при купировании и тушении пожаров СУГ и СПГ аварийных разливов сжиженных горючих газов при их транспортировке, переработке и использовании.

Известны разработанные и запатентованные ранее заявителем разработанные и запатентованные ранее заявителем способ и система ликвидации аварийных разливов сжиженного природного газа или сжиженного углеводородного газа включают обработку поверхности сжиженного газа водовоздушной пеной средней кратности на основе синтетического углеводородного пенообразователя с получением и последующей утилизацией газонасыщенной пены. В результате образуется газонасыщенная пена в виде последовательно расположенных на поверхности сжиженного газа слоя пористого льда, слоя замороженной газонасыщенной пены и слоя жидкой газонасыщенной пены, что обеспечивает снижение концентрации газа над поверхностью газонасыщенной пены ниже нижнего концентрационного предела распространения пламени [RU 2552968 A62C3/02 Опубл. 10.06.2015 Бюл. №16].

Недостатком решений по RU 2552968 является возможность подачи пены средней кратности только на растояния, недостаточные для ликвидации последствий крупномасштабных аварий.

Наиболее близкими по технической сущности и достигаемому техническому результату (прототипами) являются разработанные и запатентованные ранее заявителем способ и система ликвидации аварийных разливов сжиженного природного газа или сжиженного углеводородного газа включающие обработку поверхности сжиженного газа комбинированной водовоздушной пеной низкой и средней кратности на основе синтетического углеводородного пенообразователя с получением и последующую утилизацию газонасыщенной пены. В результате воздействия образующаяся при соприкосновении струй пены низкой и средней кратности комбинированная струя водовоздушной пены низкой и средней кратности образует на поверхности разлива сжиженного газа слой газонасыщенной пены в виде последовательно расположенных на поверхности сжиженного газа слоя пористого льда, слоя замороженной газонасыщенной пены и слоя жидкой газонасыщенной пены, обеспечивающих снижение концентрации газа над поверхностью газонасыщенной пены ниже нижнего концентрационного предела распространения пламени и возможность последующей утилизации газонасыщенной пены [RU 2552969 A62C3/02 Опубликовано: 10.06.2015 Бюл. №16 (прототип)].

Недостатком способа по прототипу RU 2552969 является то, что струя пены низкой кратности, обладая сравнительно большей плотностью и большим запасом кинетической энергии по сравнению со струей пены средней кратности, быстрее достигает поверхности разлива сжиженного газа и, в результате наличия в ней повышенного содержания воды и механических усилий воздействия на поверхность разлива, обусловливает усиление испарения сжиженного газа, так как известно, что механические воздействия и поступление воды на поверхность сжиженного газа усиливает его испарение и соответственно повышает концентрацию взрывоопасных паров газа в тех местах куда в силу неньшей плотности и меньшего запаса кинетической энергии не долетает струя пена средней кратности.

Задача и технический результат

По мнению большинства специалистов в области обеспечения пожаровзрывобезопасности вообще, а пожаровзрывобезопасности объектов топливноэнергетических комплексов, в особенности, опыта и нормативного обеспечения пожаровзрывобезопасности при работах с СУГ и СПГ в настоящее время в России, особенно для аварийных ситуаций на объектах транспортировки и слива/налива СУГ и СПГ практически нет, что обусловлено следующими основными обстоятельствами:

- объемы резервуаров хранения и транспортировки СУГ и СПГ в десятки раз больше обычных резервуаров легковоспламеняющихся и горючих жидкостей (ЛВЖ и ГЖ), поэтому площади их проливов и пожаров тоже соответственно в десятки раз больше, чем при авариях с обычными ЛВЖ и ГЖ;

- технологии криогенного сжижения углеводородов, особенно в варианте крупнотоннажного производства, и использования сжиженных горючих газов поивились сравнительно недавно, в последние 30-40 лет;

- сжиженные горючие газы как горючие субстанции бладают специфическими теплофизическими и термодинамическими свойствами, существенно отличающимися от теплофизических и термодинамических свойств обычных ЛВЖ и ГЖ;

Кроме огромных масштабов суммарных транспортировок и грандиозных масштабов резервуаров единичного хранения СПГ существуют специфические особенности этой горючая жидкости (СУГ и СПГ) - она хранится почти без давления (под минимальным давлением ее паров упругости, порядка 0,2 атм, избыточных, по отношению к окружающей атмосфере), при минусовой температуре -160°С для СПГ и -40-42°С для СУГ. Это создает множество технологических (инженерных, теплофизических, прочностных) проблем его безопасного хранения и транспортировки.

При испарении 1-го м3 пролитого сжиженного метана (СПГ) образуется более 600 м3 газообразного метана с первоначальной плотностью порядка 1,86 кг/м3 при температуре его испарения -160°С. Это может привести к образованию более 6000 м3 опаснейшей газовоздушной смеси стехиометрического состава и порядка 12000 м3 просто пожаровзрывоопасной смеси.Вероятность воспламенения и зона взрыва этого объема горючей смеси зависит только от состояния окружающей атмосферы (температуры воздуха и скорости ветра над поверхностью пролитого СПГ или СУГ и момента появления источника поджигания (воспламенения) этой газовоздушной смеси.

Как показывает многолетний опыт работы Газпрома, при возникновении опасных ситуаций - газопроявлений (утечек газа), в 30-40% случаев таких утечек, источник поджигания достаточной мощности (более 1-2 миллиджоулей (энергии по количеству эквивалентной 1/100 энергии, выделяемой при сгорании всего одной спичечной головки), в зоне скопления взрывоопасной газовоздушной смеси появлялся и приводил к ее воспламенению, пожару или взрыву. По более современным данным, применительно именно к авариям с проливом СУГ и СПГ, образующиеся паровоздушные смеси так или иначе (в виде пожара или взрыва) воспламеняются не в 30-40% случаев, а в 90% случаев [Ведомственные нормы на проектирование установок по производству и хранению СПГ, изотермических хранилищ и газозаправочных станций. 4-51 - 1-88. 21 февраля 2013 г.; 5. НПБ 107-97].

По расчетам специалистов ФГБУ «27 НЦ» МО РФ мощность взрыва паровоздушного облака при одномоментном истечении тысячи тонн сжиженного СПГ по воздушной ударной волне будет сопоставима с мощностью взрыва ядерного оружия 10 килотонн в тротиловом эквиваленте, что сопоставимо с мощностью взрыва атомной бомбы в Хиросиме!

Поэтому практическое решение проблем ликвидации разлива сжиженного природного газа посредством снижения скорости испарения горючего газа с поверхности разлива сжиженного газа для предотвращения взрыва быстрообразующейся над поверхностью разлива газовоздушной смеси, предотвращения возгорания (купирования) и тушения пожаров при аварийных и технологических разливах сжиженного природного газа или сжиженного углеводородного газа чрезвычайно актуально.

Техническим результатом, получаемым при использовании изобретения являются повышение эффективности ликвидации последствий аварийных и технологических разливов сжиженного природного газа (СПГ) или сжиженного углеводородного газа (СУГ), далее совместно - «сжиженного газа (СГ)», путем:

эффективного купирования и тушения пожаров аварийных разливов сжиженного газа на расстоянии до 150 и более метров с существенно более мягким мягким воздействием струй гибридной пены на поверхность разлива с существенным снижением скорости испарения газа с поверхности разлива и соответственно с замедлением достижения взрывоопасной концентрации газа в на поверхностью разлива;

ускорения формирования на поверхности разлива слоя газонасыщенной пены, обеспечивающего снижение концентрации газа над поверхностью газонасыщенной пены ниже нижнего концентрационного предела распространения пламени;

быстрого нанесения на поверхность разлива сжиженного газа с безопасного растояния гибридной пены с опережающей скоростью получения слоя газонасыщенной пены на поверхности сжиженного газа относительно осредненной скорости восхождения потока испаряющегося газа;

обеспечения возможности безопасной и контролируемой ликвидации разливов сжиженного газа с возможностью утилизации разлитого сжиженного газа;

предотвращения образования и воспламенения (взрыва) газовоздушной смеси газа и воздуха при разливах сжиженного газа;

предотвращения воспламенения (пожара) разливов сжиженного газа;

обеспечения возможности управления развитием аварийной ситуации посредством нанесения гибридной пены с безопасного растояния на поверхность разлива газа с большой интенсивностью и из огенераторов с большим секундным расходом пенообразующего раствора и соответственно с большим радиусом управляемой подачи пенных струй в зону аварии;

обеспечения возможности безопасной контролируемой утилизации паров газа контролируемым сжиганием и утизизации разлитого сжиженного газа в виде замороженной и жидкой газонасышенной водовоздушной пены.

Сущность изобретения

Поставленная задача решается и требуемый технический результат достигается тем, что при ликвидации аварийных и технологических разливов сжиженного природного газа и сжиженного углеводородного газа, далее - "сжиженного газа", включающей нанесение на поверхность разлива сжиженного газа водовоздушной пены с получением и последующей утилизацией испаряющегося из разлива газа, согласно изобретения на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с преимущественной кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения под напором 0,6-1,4, преимущественно 0,8-1,2 МПа, коаксиальных, соприкасающихся или взаимно пересекающихся струй воздушномеханической пены низкой кратности с преимущественной кратностью от 5 до 15 и струй воздушномеханической пены средней кратности с преимущественной кратностью от 25 до 70, при их соответствующем соотношении по расходу используемого для их образования раствора пенообразователя от 8:1 до 1:1, при их соответствующем объемном соотношении от 0,1 до 1,0.

Гибридную водовоздушную пену пену, получают в результате турбулентного перемешивания в процессе спутного движения струй воздушномеханической пены низкой и средней кратности, формируемых вспениванием воздухом водного раствора пенообразователя.

Гибридную водовоздушную пену наносят на поверхность разлива сжиженного газа:

с получением слоя газонасыщенной пены, обеспечивающего снижение концентрации газа над поверхностью газонасыщенной пены ниже нижнего концентрационного предела распространения пламени;

с опережающей скоростью получения газонасыщенной пены на поверхности сжиженного газа относительно осредненной скорости восхождения потока испаряющегося газа;

с интенсивностью ее подачи не менее 0,5-1,0 л/с на м2 поверхности разлива сжиженного газа по раствору пенообразователя в течение времени не более 1 - 25 секунд после разлива сжиженного газа.

Утилизацию испаряющегося из разлива газа осуществляют путем контролируемого его сжигания над слоем гибридной пены на месте разлива сжиженного газа.

Утилизацию получаемой на поверхности разлива сжиженного газа газонасыщенной пены осуществляют:

путем контролируемого сжигания газонасыщенной пены на месте разлива сжиженного газа;

путем контролируемого сжигания газонасыщенной пены после ее перемещения с места разлива сжиженного газа;

путем естественного или искусственного разрушения газонасыщенной пены с последующим проветриванием или выветриванием места утилизации до объемных концентраций газа ниже нижнего концентрационного предела распространения пламени.

Гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа:

посредством средств генерации пены низкой и средней кратности с автоматической, ручной или дистанционной системой управления и и/или осцилированием;

посредством средств генерации пены низкой и средней кратности, установленных на объектах производства, хранения, переработки или транспортировки сжиженного газа;

посредством средств генерации пены низкой и средней кратности, стационарно установленных на объектах с высокой степенью пожаровзрывоопасности;

посредством средств генерации воздушномеханической пены пены низкой и средней кратности, установленных на мобильных железнодорожных, воздушных, водоплавающих или автомобильных,транспортных средствах или прицепах;

посредством средств генерации воздушномеханической пены пены низкой и средней кратности, размещенных в контейнерах, установленных на палубах морских судов и морских платформ или на транспортных средствах объектов берегового базирования.

Поставленная задача решается и требуемый технический результат достигаются также тем, что система ликвидации аварийных и технологических разливов сжиженного природного газа или сжиженного углеводородного газа, далее - "сжиженного газа", путем нанесения на поверхность разлива сжиженного газа водовоздушной пены с получением и последующей утилизацией испаряющегося из разлива газа, согласно изобретения содержит средства генерации воздушномеханической пены низкой кратности и средства генерации воздушномеханической пены средней кратности, изготовленные с возможностью получения и нанесения на поверхность разлива сжиженного газа по крайней мере одной струи гибридной водовоздушной пены, получаемой в результате турбулентного перемешивания в процессе спутного движения коаксиальных, соприкасающихся или взаимно пересекающихся струй воздушномеханической пены низкой кратности и воздушномеханической пены средней кратности.

При этом система содержит средства генерации воздушномеханической пены с кратностью от 5 до 15 и средства генерации воздушномеханической пены с кратностью от 25 до 70, изготовленные с возможностью получения и нанесения на поверхность разлива сжиженного газа по крайней мере одной струи гибридной водовоздушной пены с кратностью с кратностью от 20 до 40, получаемой в результате турбулентного перемешивания в процессе спутного движения струй воздушномеханической пены с кратностью от 5 до 15 и воздушномеханической пены с кратностью от 25 до 70 и что выполнена с возможностью реализации описанного выше способа.

Используемые для получения гибридной пенгы средства генерации пены низкой и средней кратности могут быть изготовлены:

с автоматическим, ручным или дистанционным управлением и и/или осцилированием;

установленными на объектах производства, хранения, переработки или транспортировки сжиженного газа;

стационарно установленными на объектах с высокой степенью пожаровзрывоопасности;

установленными на мобильных железнодорожных, воздушных, водоплавающих или автомобильных,транспортных средствах или прицепах;

установленными на палубах морских судов и морских платформ или на транспортных средствах объектов берегового базирования.

В качестве отдельных элементов и узлов оборудования системы для реализации предлагаемого способа могут быть использованы различные известные и традиционные для противопожарной техники технологии, материалы и конструктивные решения, обычно применяемые при ликвидации аварий, предотвращения возгорания и взрыва (купирования) и тушения пожаров сжиженных горючих газов.

Краткое описание чертежей

На фиг. 1 и фиг. 2 показаны соответственно вид сбоку и вид сверху схемы формирования гибридной пены 4 с кратностью от 20 до 40, получаемой в результате взаимного перемешивания в процессе спутного движения коаксиальных, соприкасающихся или пересекающихся струй 1 воздушномеханической пены низкой кратности с кратностью от 5 до 15 и струй 2 воздушномеханической пены средней кратности с кратностью от 25 до 70.

На этих же чертежах показана возможность формирования гибридной пены с кратностью от 20 до 40, получаемой на расстоянии 0,2 - 0,8 общей длины L от генератора или совмещенных генераторов пены L струи гибридной пены, получаемой в результате взаимного перемешивания в процессе спутного движения коаксиальных, соприкасающихся или пересекающихся струй воздушномеханической пены низкой кратности с кратностью от 5 до 15 и струй воздушномеханической пены средней кратности с кратностью от 25 до 70.

На фиг. 3, 4 и 5 - сечения А-А, Б-Б и В-В спутного движения струй коаксиальных, соприкасающихся или пересекающихся струй 1 воздушномеханической пены низкой кратности с кратностью от 5 до 15 и струй 2 воздушномеханической пены средней кратности с кратностью от 25 до 70, котрые в начале спутно движутся без перемешивания (сечение А-А на фиг. 3), затем спутно движутся с частичным перемешиванием (сечение Б-Б на фиг. 4) и с полным взаимным перемешиванием с получением единой струи 3 гибридной пены с кратностью от 20 до 40.

На фиг. 3, 4 и 5 также показана структура пены низкой кратности, пены средней кратности и гибридной пены, получаемой турбулетным смешиванием пены низкой кратности с пеной средней кратности.

На фиг 5 - на структура гибридной пены, получающаяся в результате турбулентного перемешивания пузырьков пены низкой кратности и пузырьков пены средней кратности с получающимся при этом усредненным размером пузырьков водовоздушной пены с утолщенными каналами Гиббса-Плато.

На фиг. 6 - схема тушения пожара поверхности горючей жидкости струей 3 гибридной пены с кратностью от 20 до 40, получающейся в результате перемешивания в процессе спутного движения коаксиальных, соприкасающихся или взаимно пересекающихся струй 1 воздушномеханической пены низкой кратности с кратностью от 5 до 15 и струй 2 воздушномеханической пены средней кратности с кратностью от 25 до 70.

На фиг. 7 - факел свободного горения жидкого топлива на полигоне размерами 50 х 25 м детально описанных ниже натурных огневых испытаний на полигоне Нефтеперерабатывающего завода «Киришинефтеоргсинтез» (Ленинградская область, г. Кириши), где с помощью модернизированных пеногенераторов ПУРГА и BLIZARD обеспечивалось тушение пожара слоя жидкого топлива гибридной водовоздушной пеной.

На фиг. 8, 9 показан процес тушение пожара топлива гибридной водовоздушной пеной во время натурных огневых испытаний, на фиг. 10 - стадия формирования на поверхности потушенного жидкого топлива слоя гибридной пены, а на фиг. 11 - вид полигона после завершения пенной атаки гибридной пеной.

На фиг. 12 и 13 представлены фото разработанных заявителем модернизированных пеногенераторов ПУРГА и BLIZARD с совмещенными стволами воздушномеханической пены низкой и средней кратности, обеспечивающих формирование и подачу гибридной водовоздушной пены с кратностью от 20 до 40, получаемой в результате результате турбулентного перемешивания в процессе спутного движения струй воздушномеханической пены с кратностью от 5 до 15 и струй воздушномеханической пены с кратностью от 25 до 70.

Осуществление изобретения

Известно, что пена - наиболее эффективное и широко применяемое огнетушащее вещество, представляющее собой дисперсную систему, состоящую из ячеек - пузырьков воздуха (газа), разделенных пленками жидкости, содержащей пенообразователь [ГОСТ Р 50588-2012 Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний].

Отношение объемов газовой и жидкой фаз (в единице объема) пены определяет структуру и ее свойства. Если объем газовой фазы Vг превышает объем жидкости Vж не более чем в 10-20 раз (пены низкой кратности), ячейки пены, заполненные газом, имеют сферическую форму. В таких пенах газовые пузыри окружены оболочками жидкости относительно большой толщины. Сферические пены отличаются высоким содержанием жидкости и в силу этого - малой устойчивостью. Поэтому их относят к метастабильным (условно стабильным). В нестабильных пенах наблюдается так называемый эффект Плато: жидкая фаза из перегородок удаляется, истекая под действием силы тяжести, и происходит быстрая коалесценция (от лат. coalesce - срастаюсь, соединяюсь) - слияние соприкасающихся газовых пузырьков. В пене газовый пузырек не может свободно перемещаться ни в вертикальной, ни в горизонтальной плоскости. Он как бы «зажат» другими, прилегающими к нему пузырьками.

С увеличением отношения Vг / Vж толщина пленки жидкости, разделяющая газовые объемы, уменьшается, а газовая полость утрачивает сферическую форму. Пены средней кратности, у которых отношение Vг / Vж составляет несколько десятков или даже сотен, имеют многогранную форму. Причем форма многогранников может быть различной - треугольные призмы, тетраэдры, неправильной формы параллелепипеды. В процессе старения пены шарообразная форма ячеек переходит в многогранную. Многогранные пены отличаются малым содержанием жидкой фазы и характеризуются высокой стабильностью. В таких пенах отдельные пузырьки сближены и разделены тонкими «растянутыми упругими пленками». Эти пленки в силу упругости и ряда других факторов препятствуют коалесценции газовых пузырьков. По мере утончения разделительных пленок пузырьки все плотнее сближаются, прилегают друг к другу и приобретают четкую форму многогранников [Бобков С. А., Бабурин А. В., Комраков П. В. Физико-химические основы развития и тушения пожаров: учеб. пособие / - М. : Академия ГПС МЧС России, 2014. - 210 с.].

Основными физико-химическими свойства пены являются:

кратность - отношение объема пены к объему раствора пенообразователя, содержащегося в пене;

дисперсность - степень измельчения пузырьков (размеры пузырьков);

вязкость - способность пены к растеканию по поверхности;

стойкость - способность пены сопротивляться процессу разрушения [там же].

В зависимости от величины кратности (К) пены разделяют на четыре группы:

пеноэмульсии, К < 3;

низкократные пены, 3 < К< 20;

пены средней кратности, 20 < К < 200;

пены высокой кратности, К > 200 [Шароварников А.Ф., Шароварников С.А. Пенообразователи и пены для тушения пожаров. Состав, свойства, применение. М.: Пожнаука, 2005. - 335 с.].

Дисперсность пены обратно пропорциональна среднему диаметру пузырьков.

Известно, что чем выше дисперсность, тем выше стойкость пены и огнетушащая эффективность. Степень дисперсности пены во многом зависит от условий ее получения, в том числе и от характеристики аппаратуры. Кратность и дисперсность пены определяют изолирующую способность пены и ее текучесть. [Бобков С. А., Бабурин А. В., Комраков П. В. Физико-химические основы развития и тушения пожаров: учеб. пособие / - М. : Академия ГПС МЧС России, 2014. - 210 с.].

В качестве огнетушащих свойства пены выделяют:

изолирующее действие - препятствие поступления в зону горения горючих паров, газов или воздуха, обусловливающего прекращение горения;

охлаждающее действие - обусловленное наличием в преимущественно пене низкой кратности значительного количества жидкости.

Охлаждающее действие пены обусловливается водой, выделяющейся из пены.

Изолирующее действие обусловливается образованием слоя пены, который препятствует доступу кислорода к зонуу пожара, включая:

эффект разделения, заключающийся в изолировании жидкости от паровой фазы;

эффект вытеснения, обусловливающий изоляцию горючего вещества от воздуха;

преграждающий эффект, при котором пена препятствует испарению горючей жидкости.

Пены низкой кратности (3 < К< 20) в силу значительного количества воды в межпузырьковых перегородах (в каналах Плато-Гиббса) преимущественно проявляют охлаждающий огнетушащий эффект, обусловливающийся охлаждающим действием самой пены и воды, выделяющейся из пены.

Пены средней кратности (20 < К < 200) в силу незначительного количества воды в межпузырьковых перегородах (в каналах Плато-Гиббса) преимущественно проявляют изолирующий огнетушащий эффект, обусловливающийся созданием над зоной горения обедненной кислородом и насыщенными парами воды атмосферы, способствующей замедлению и полному прекращению горения.

При этом в силу более значительного количества воды, имеющейся в пене низкой кратности воды, и соотвественно большей плотности (веса единицы объема) пены низкой кратности по сравнению с пенами средней кратности можно подавать с более дальних растояний, что существенно влияет на обеспечение безопасности пожарного персонала при крупномасштабных и взрывоопасных аварий со сжиженными газами.

Характерной отличительной особенностью предлагаемых технических решений является получение и применение гибридной водовоздушной пены на основе синтетических углеводородных пенообразователей с кратностью от 20 до 40, получаемой в результате турбулентного перемешивания в процессе спутного движения струй воздушномеханической пены с кратностью от 5 до 15 и струй воздушномеханической пены с кратностью от 25 до 70.

Эксперементально установлено и теоретически обосновано, что гибридная водовоздушная пена с кратностью от 20 до 40, получаемая на специально модернизированном оборудовании в результате турбулентного перемешивания в процессе спутного движения коаксиальных соприкасающихся или взаимно перекрещивающихся струй воздушномеханической пены с кратностью от 5 до 15 и струй воздушномеханической пены с кратностью от 25 до 70 существенно отличается по своей структуре, вязкости, дисперсности, реологическим, тиксотропным и другим значимым для взрывопажаропредотвращения и пожаротушения свойствам от известных свойств пен низкой и средней кратности на основе углеводородных и фторсодержащих пенообразователей.

Выявлено, что в результате турбулентного перемешивания пузырьков пены низкой кратности и пузырьков пены средней кратности в гибридной пене образуются усредненные по размерам пузырьки пены, более крупные по сравнению с пузырьками пены низкой кратности, но с более утолщенными по сравнению с пенами средней кратности водосодержащими каналами Плато-Гиббса.

Экспериментально установлено, что структура гибридной пены с кратностью от 20 до 40, получающаяся в результате турбулентного перемешивания в процессе спутного движения струй воздушномеханической пены низкой кратности с кратностью от 5 до 15 и струй воздушномеханической пены средней кратности с кратностью от 25 до 70 с уникальными по своей структуре и огнетушащим свойствам водовоздушными пузырьками, позволяет не только лучше сдерживать высокую температуру пламени без существенных разрушений объема самой гибридной пены, то есть эффективнее изолировать поверхность пожара, но и доставлять струю гибридной пены на значительно большие растояния по сравнению со струями пены средней кратности или комбинированными струями пены низкой кратности и средней кратности.

Экспериментально установлено также, что при воздействии гибридной пены с кратностью от 20 до 40 на поверхность разлива сжиженного природного или углеводородного газа проявляется эффект синергизма за счет одновременного воздействия нескольких факторов - охлаждения, разбавления парами воды атмосферы в зоне испарения и горения раза, теплоизоляции и резкого снижения концентрации паров газа над слоем пены в зоне горения вплоть до снижения скорости химической реакции и последующего уменьшения температуры пламени до температуры потухания.

Это обусловлено усредненной дисперсностью и утолщенностью водосодержащих каналов Гиббса-Плато гибридной пены по сравнению с пенами низкой и средней кратности или по сравнению с пеной в комбинированных струях пены низкой кратности и средней кратности.

Натурные огневые испытания модернизированных стволов для получения гибридной пены производимых заявителем модернизированных стволов и пеногенераторов показали высокую эффективность пожаровзрывопредотвращения и тушения горения как легковоспламеняющихся и горючих жидкостей, так и розливов сжиженных природных и углеводородных газов.

Заявителем были проведены натурные огневые испытания на полигоне, где с помощью разработанных заявителем модернизированных установок комбинированного тушения пожаров "Пурга" и "BLIZARD" обеспечивалось эффективное тушение слоя топлива на площади 1250 м2.

Как показали результаты испытаний, применяемые для тушения пожара разработанные заявителем модернизированные установки "Пурга" и "BLIZARD" обеспечивают мягкую и плавную подачу гибридной пены на поверхность пожара на повышенных растояниях до 150 и более метров без грубого воздействия на площадь горения. то есть без перемешивания верхнего слой горючего с пенным слоем.

Кратность полученной на разработанных заявителем модернизированных установках "Пурга" и "BLIZARD" гибридной пены составляла от от 20 до 40 или 30 + 10.

Использовался синтетический углеводородный экологически чистый пенообразователь типа ПО-6ТС российского производства. Дальность подачи полученной гибридной пены составляла более 150 м.

Натурные огневые испытания разработанных заявителем модернизированных установок "Пурга" и "BLIZARD" показали, что гибридная пена обладает значительно более мягким воздействие на поверхность горения и большей огнетушащей эффективностью по сравнению с пенами оборудования, подающего отдельно пены низкой и средней кратности или по сравнению с комбинированными пенами низкой и средней кратности.

Присутствующие на испытаниях специалисты пришли к выводу, что оборудование для «гибридной пены» производства заявителя может стать эффективным вариантом для применения пенообразователей и пен, не содержащих фтор.

При всей этой неоднозначности и неопределенности исходных параметров аварийной ситуации при истечении или разливе сжиженного газа (СПГ и/или СУГ), возможно выделить следующие варианты аварийных ситуаций:

- вскрытие (полное или частичное) обрушение кровли резервуара; истечение или пролив сжиженного горючего газа:

- малодебитное (слабое) истечение сжиженного горючего газа из отверстий малых размеров;

- одномоментный выброс сжиженного горючего газа с последующим продолжительным истечением;

- одномоментный выброс большого объема сжиженного горючего газа или интенсивное его истечение;

- тотальное разрушение резервуара, с почти единовременным истечением и проливом всей массы сжиженного горючего газа.

Кроме того, в аварийных ситуациях и динамике их развития возможно выделить следующие стадии развития аварийных ситуаций:

- истечение сжиженного горючего газа до воспламенения истекающего (пролитого) сжиженного горючего газа;

- воспламенение газовоздушной смеси в кинетическом режиме ее горения (дефлаграционный взрыв газовоздушной смеси);

- воспламенение испаряющегося, пролитого сжиженного горючего газа в диффузионном режиме горения (пожар);

- одновременное воспламенение образовавшейся газовоздушной смеси и паров газа над поверхностью пролитого сжиженного горючего газа (пожар со взрывом).

Кроме специфических ситуационных особенностей аварий и катастроф с сжиженного горючего газа (СУГ и СПГ), связанных с возникновением пожара или взрыва, масштаб и сложность таких аварий характеризуется значительными размерами площади пожара, а также мощностью взрыва, в случае его возникновения.

При малоопасном факельном горении при струйном истечении газообразной или даже жидкой фазы сжиженного горючего газа через малое отверстие размером 5-6 мм локальная тепловая мощность факела пламени пожара будет не более 150-200 кВт, а пламя будет размером не более 20-30 см диаметром и не более 1-2 метров длиной (в зависимости от размеров и формы отверстия истечения, уровня его образования, силы ветра и проч.).

Подобные факелы, можно потушить любым видом известного огнетушащего средства (водой, пеной, порошком и даже негорючим газом) из любого типа огнетушителя.

Большие пожары площадью в несколько десятков и сотен квадратных метров (на земле, на воде, на плавучей или стационарной платформе, на сливоналивной эстакаде и т.п.) до настоящего времени было сложно, а иногда невозможно потушить известными системами и средствами пожаротушения.

Поэтому, при всех сценариях развития аварийной ситуации, обусловленной проливом или истечением сжиженного горючего газа (кроме варианта внезапного взрыва газовоздушной смеси в момент истечения сжиженного горючего газа), наиболее перспективным и целесообразным представляется управление развитием аварийной ситуации

Использование изобретения делает это вполне возможным во всех рассмотренных выше вариантах и на всех стадиях аварийных ситуаций за исключением внезапных взрывов путем предлагаемого использования комбинированной пены низкой и средней кратности, подаваемой в поток или на поверхность сжиженного горючего газа с большой интенсивностью и из пеногенераторов с большим секундным расходом пенообразующего раствора и, соответственно, с достаточно большим радиусом управляемой, (регулируемой) подачи пенных струй в зону аварии с формированием на поверхности разлива сжиженного горючего газа слоя гибридной пены, позволяющего купировать развитие пожаровзрывоопасной ситуации при разливе сжиженного горючего газа и обеспечить возможность контролируемой ликвидации последствий разлива сжиженного горючего газа.

Как показал комплекс исследований и натурных огневых испытаний, проведенных авторами на полигонах ОАО «Киришинефтеоргсинтез» при локализации и купировании последствий аварий с сжиженным горючим газом посредством применения модернизированных установок комбинированного тушения подаров «ПУРГА» и "BLIZARD" производства заявителя в большинстве случаев ситуацию можно взять под контроль за время порядка от 1-й - 2- х секунд, и удерживать ее под контролем до 15-ти 30-ти и более минут (в зависимости от масштаба и сложности аварии, количества пролитого горючего, площади его растекания, сложности объекта и других ситуационных обстоятельств аварии).

Практически во всех случаях при использовании изобретения возможно избежать или существенно снизить опасность и мощность взрыва, сократить площадь послеаварийного пожара или вообще предотвратить его возникновение, сведя аварию к постепенному, пожаровзрывобезопасному испарению пролитого сжиженного горючего газа или организовав контролируемое, управляемое, медленное выжигание насыщенной горючим газом пены с поверхности разлива сжиженного горючего газа.

В основу изобретения положены следующие, экспериментально выявленные и теоретически обоснованные исходные представления и допущения об элементарных процессах над «свободной» (или «покрытой») поверхностью разлитого сжиженного горючего газа (СУГ и СПГ):

В равновесном состоянии сжиженные горючие газы, как и все другие жидкости в природе, находятся под давлением собственных паров (насыщенного пара в «закрытом» сосуде) или под другим видом покрытия «зеркала поверхности жидкости» или под парциальным давлением паров (паров упругости) при свободной поверхности зеркала жидкости.

Образующаяся непосредственно над поверхностью сжиженного горючего газа газо-воздушная смесь по концентрационному составу паров горючего очень высока, верхний концентрационный предел воспламенения (ВКПВ) метана 15 объемных %, а пропан/бутановой смеси - 9 объемных %) и становится пожаровзрывоопасной лишь на некотором удалении от этой поверхности, и только через какое-то, пусть даже очень малое, время.

Практическая задача по обеспечению пожаровзрывобезопасности во всех ситуациях во время этих аварий сводится к контролю и управлению концентрацией паров сжиженного горючего газа (СУГ и СПГ) во всем пространстве аварии и в течение всего времени с момента начала аварии посредством сформированного над поверхностью разлива сжиженного горючего газа (СУГ и СПГ) согласно изобретения слоя гибридной водовоздушной пены с кратностью от 20 до 40 на основе синтетического углеводородного пенообразователя, состоящего из расположенного непосредственно на поверхности разлива ледяного низкой и средней кратности и расположенного выше слоя жидкой гибридной водовоздушной атности преимущественно на основе синтетического углеводородного пенообразователя.

В связи с тем, что с момента аварии (пролива или истечения) сжиженного горючего газа всегда находятся при окружающей их температуре значительно выше их температуры кипения, они начинают интенсивно испаряться.

При этом суммарная интенсивность испарения жидкости пропорциональна площади их свободной поверхности, а при попадании на сжиженный газ капель воды испарение резко возрастает до возможного вскипания.

В качестве технического приема, технического способа реализации этой идеи нейтрализации или купирования опасных факторов аварий такого рода принята идея (и предложены соответствующие технические способы) оперативного покрытия всей свободной поверхности разлива сжиженного горючего газа (СУГ и СПГ) комбинированной водовоздушной пеной низкой и средней кратности преимущественно на основе синтетического углеводородного пенообразователя определенной кратности, с определенными параметрами и свойствами, с применением определенных технических устройств, систем и приспособлений.

Параметры, состав и свойства комбинированной водовоздушной пеной низкой и средней кратности преимущественно на основе синтетического углеводородного пенообразователя, а также режимы и способы ее подачи, определены и обоснованы экспериментально с учетом термодинамических и теплофизических особенностей ее взаимодействия при ее непосредственном контакте с поверхностью разлива сжиженного горючего газа (СУГ и СПГ).

Специфика решаемой изобретением проблемы состоит в том, что при всех прочих вариантах применения воздушно-механических и даже химических пен с целью тушения пожаров легковоспламеняющихся жидкостей (ЛВЖ) и горючих жидкостей (ГЖ) и/или даже защиты их от воспламенения, весьма существенную роль, а при тушении пожаров горючих жидкостей (ГЖ) даже доминирующую роль, играет процесс охлаждения поверхности горящей жидкости от температуры ее кипения, до которой ее поверхность прогревается уже за первые 3-5 минут пожара, до более низкой температуры (для варианта тушения пожара горючих жидкостей (ГЖ), вообще до температуры ниже температуры вспышки.

При тушении пожара легковоспламеняющихся жидкостей (ЛВЖ) температура поверхностного слоя жидкости снижается до температуры ниже температуры ее кипения.

При этом, во всех случаях снижается интенсивность испарения ЛВЖ и ГЖ, снижается давление паров упругости горящей жидкости под слоем пены и их парциальное давление. Тогда механическое изолирующее действие слоя пены только довершает процесс изоляции горящей жидкости и ее паров от зоны горения, от зоны пламени пожара и горение ЛВЖ и ГЖ прекращается. Так происходит процесс тушения пожаров ЛВЖ и ГЖ.

Существенно иначе выглядит теплофизическая картина теплового взаимодействия соприкасающихся сред при нанесении воздушно-механических пен на поверхность СГ.

Температура воздушно-механической пены редко выходит за пределы от +1 до +15°С. Это означает, что теплоперепад (тепловой напор) от пены к СУГ порядка 30-40°С, а для СПГ даже 150-160°С. Поэтому, процесс испарения сжиженного горючего газа (СУГ и СПГ), за счет теплопритока от пены, при ее нанесении, не снижается, а наоборот, интенсифицируется.

Таким образом, процесс предотвращения возгорания (купирование) процесса прохождения паров горючего газа в надпенное пространство, в зону возможного горения, сводится к процессам сорбции, поглощения, задержания потока паров сжиженного горючего газа, что согласно изобретения может быть обеспечено пенным слоем определенного состава, определенной толщины и определенной структуры.

В силу того, что процесс разрушения жидкой пены, даже при отсутствии пожара над ней или под ней, идет непрерывно, и часть пенообразователя сквозь пену стекает вниз и попадает на поверхностный слой сжиженного горючего газа (СУГ и СПГ), процесс интенсификации их испарения, за счет отекания «теплого» раствора пенообразователя продолжается непрерывно, но может ограничиваться ледяным слоем замороженной пены, располагаемой непосредственно на поверхности разлива сжиженного горючего газа ледяного слоя замороженной гибридной пены.

Экспериментально определено и теоретически обосновано, что особую роль в ситуации разлива сжиженного горючего газа (СУГ и СПГ) играют фазовые превращения на поверхности раздела фаз пена/СУГ и/или пена/СПГ (пена/ сжиженный горючий газ) и поверхностным слоем жидких субстанций сжиженного горючего газа.

При контакте жидкой фазы пены с жидкой фазой горючего, имеющего температуру -162°С (при СПГ) или -42°С (при СУГ), нижние слои пены замерзают, переходя в твердую фазу определенной снегообразной структуры. Под слоем замороженной снегообразной пены начинает формироваться пористая ледяная подложка непосредственно на поверхности разлива сжиженного горючего газа.

В зависимости от дисперсности и кратности применяемых пен, физической и химической природы раствора пенообразователя и соотношения сил поверхностного натяжения на границе раздела фаз зависят плотность, пористость, газопроницаемость, теплопроводность и плавучесть образовавшегося снегообразного слоя замороженной пены под защитным слоем жидкой пены.

Следовательно, самым существенным образом от этого зависят теплоизолирующие и газоизолирующие свойства слоистого «сэндвича» на поверхности разлива сжиженного горючего газа: пары сжиженного горючего газа, ледяной слой, слой замороженной газонасыщенной пены и слой жидкой газонасыщенной пены или слой замороженной газонасыщенной пены и слой жидкой газонасыщенной пены.

Дальнейшие параметры процесса испарения горючей субстанции сжиженного горючего газа и проникновение ее паров в зону возможного контролируемого горения газа над слоем газонасыщенной пены или контролируемого насыщенной газом пены (концентрация паров горючего газа над пеной или концентрация газа в пене), зависят от теплофизических свойств слоя замороженной пены и следующего слоя жидкой пены. От их толщины, газопроницаемости, теплопроводности, сорбционных свойств слоя замороженной газонасыщенной гибридной пены и расположенного выше слоя жидкой газонасыщенной гибридной пены.

Исследования авторов и натурные огневые испытания показали, что дорогие импортные фторсодержащие пленкообразующие пенообразователи самые худшие из известных пенообразователей для купирования и тушении пожаров СУГ и СПГ, а наиболее эффективны именно дешевые, производимые в России экологически безопасные синтетические углеводородные пенообразователи, например синтетический углеводородный пенообразователь типа ПО-6ЦТ.

Экспериментально установлено также, что в качестве генератов гибридной пены для купирования и тушения пожаров СУГ и СПГ и утилицации разливов СУГ и СПГ целесообразно использовать модернизированные установки "Пурга" и "BLIZARD" производства заявителя, обеспечивающих формирование и подачу гибридной пены на расстояние до 150 и более метров.

Таким образом, все отображенные существенные признаки изобретения находятся в причинно-следственной связи с техническим результатом, получаемым от использования изобретения.

Конкретные параметры ликвидации аварийных разливов, пожаровзрывопредотвращения, купирования и тушения пожара разливов сжиженного природного газа или сжиженного углеводородного газа водовоздушной гибридной пеной определены экспериментально и практически проверены в процессе натурных огневых испытаний.

Натурные испытания в полевых условиях показали уверенное решение поставленной задачи и достижения требуемого технического результата, а именно реализация настоящего изобретения позволяет повысить эффективность ликвидации аварийных разливов сжиженного природного газа и сжиженного углеводородного газа, далее совместно - «сжиженного газа», с обеспечением безопасной и контролируемой ликвидации аварийных разливов сжиженного газа, предотвращением образования и воспламенения (взрыва) газовоздушной смеси газа и воздуха при аварийных разливах сжиженного газа, предотвращением воспламенения (пожара) аварийных разливов сжиженного газа, эффективным купированием и тушением пожаров аварийных разливов сжиженного газа на расстоянии до 150 и более метров, предотвращением воспламенения и контролируемое выжигание сжиженного газа после купирования и тушения пожара аварийных разливов сжиженного газа.

Учитывая новизну совокупности существенных признаков, техническое решение поставленной задачи, изобретательский уровень и существенность всех общих и частных признаков изобретения, доказанных в разделе «Уровень техники» и «Раскрытие изобретения», доказанную в разделе «Осуществление и изобретения» техническую осуществимость и промышленную применимость изобретения, решение поставленной изобретательской задачи и уверенное достижение требуемого технического результата при реализации и использовании изобретения, по нашему мнению, заявленная группа изобретений удовлетворяет всем требованиям охраноспособности, предъявляемым к изобретениям.

Проведенный анализ показывает также, что все общие и частные признаки изобретения являются существенными, так как каждый из них необходим, а все вместе они не только достаточны для достижения цели изобретения, но и позволяют реализовать изобретение промышленным способом.

Кроме этого анализ совокупности существенных признаков группы изобретений и достигаемого при их использовании единого технического результата показывает наличие единого изобретательского замысла, тесную и неразрывную связь способа и системы для его осуществления. Это позволяет объединить изобретения в одной заявке, то есть обеспечить требования критерия единства изобретения.

Похожие патенты RU2744719C1

название год авторы номер документа
Способ купирования разливов сжиженного природного газа или сжиженного углеводородного газа гибридной пеной и система для его осуществления 2020
  • Куприн Геннадий Николаевич
  • Куприн Алексей Геннадьевич
  • Куприн Сергей Геннадьевич
RU2757106C1
Способ пожаровзрывопредотвращения и тушения крупномасштабных аварийно-транспортных и аварийно-промышленных пожаров комбинированной гибридной пеной и устройство для его осуществления 2023
  • Куприн Геннадий Николаевич
  • Куприн Алексей Геннадьевич
  • Куприн Сергей Геннадьевич
  • Куприн Денис Сергеевич
RU2804950C1
Способ пожаровзрывопредотвращения и тушения пожара гибридной пеной и устройство для его осуществления 2020
  • Куприн Геннадий Николаевич
  • Куприн Алексей Геннадьевич
  • Куприн Сергей Геннадьевич
  • Куприн Денис Сергеевич
RU2757479C1
Автономный пожарный модуль контейнерного типа с универсальной установкой комбинированного тушения пожара 2024
  • Куприн Геннадий Николаевич
  • Куприн Алексей Геннадьевич
  • Куприн Сергей Геннадьевич
  • Куприн Денис Сергеевич
RU2826696C1
Пожарный поезд с автономным пожарным модулем контейнерного типа 2023
  • Куприн Геннадий Николаевич
  • Морозов Дмитрий Николаевич
  • Оленин Пётр Валерьевич
  • Аксютин Валерий Петрович
  • Кораблев Денис Геннадьевич
  • Черепанов Руслан Анатольевич
RU2804551C1
СПОСОБ ЛИКВИДАЦИИ АВАРИЙНЫХ РАЗЛИВОВ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ИЛИ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА КОМБИНИРОВАННОЙ ВОДОВОЗДУШНОЙ ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2552969C1
СПОСОБ ЛИКВИДАЦИИ АВАРИЙНЫХ РАЗЛИВОВ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ИЛИ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА ВОДОВОЗДУШНОЙ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2552968C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ВЗРЫВА И ЛОКАЛИЗАЦИИ АВАРИЙНОГО РОЗЛИВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА КОМБИНИРОВАННОЙ ВОДОВОЗДУШНОЙ ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ И ОГНЕТУШАЩИМ СРЕДСТВОМ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2589562C2
СПОСОБ КУПИРОВАНИЯ РАЗЛИВОВ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ИЛИ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА ВОДОВОЗДУШНОЙ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2552971C1
СПОСОБ КУПИРОВАНИЯ РАЗЛИВОВ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ИЛИ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА КОМБИНИРОВАННОЙ ВОДОВОЗДУШНОЙ ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2552972C1

Иллюстрации к изобретению RU 2 744 719 C1

Реферат патента 2021 года Способ ликвидации разливов сжиженного природного газа или сжиженного углеводородного газа гибридной пеной и система для его осуществления

Изобретение относится к технике ликвидации последствий аварийных технологических разливов сжиженного природного газа (СПГ) или сжиженного углеводородного газа (СУГ) и может быть использовано в энергетике, транспорте, газодобывающей, газоперерабатывающей и химической промышленности. Предлагается способ ликвидации разливов СПГ или СУГ, включающий нанесение на поверхность разлива сжиженного газа (СГ) водовоздушной пены и утилизацию испаряющегося из разлива газа, на поверхность разлива СГ наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения коаксиальных, соприкасающихся или взаимно пересекающихся струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и воздушно-механической пены средней кратности с кратностью от 25 до 70. Система ликвидации аварийных разливов СПГ или СУГ содержит средства генерации воздушно-механической пены низкой кратности и средства генерации воздушно-механической пены средней кратности, изготовленные с возможностью получения и нанесения на поверхность разлива СГ по крайней мере одной струи гибридной водовоздушной пены, получаемой в результате турбулентного перемешивания в процессе спутного движения струй воздушно-механической пены низкой кратности и воздушно-механической пены средней кратности. 2 н. и 26 з.п. ф-лы, 13 ил.

Формула изобретения RU 2 744 719 C1

1. Способ ликвидации разлива сжиженного природного газа или сжиженного углеводородного газа, включающий нанесение на поверхность разлива сжиженного газа водовоздушной пены и утилизацию испаряющегося из разлива газа, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену, получаемую в результате турбулентного перемешивания в процесе спутного движения струй воздушно-механической пены низкой кратности и воздушно-механической пены средней кратности.

2. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и струй воздушно-механической пены средней кратности с кратностью от 25 до 70.

3. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения коаксиальных, соприкасающихся или взаимно пересекающихся струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и воздушно-механической пены средней кратности с кратностью от 25 до 70.

4. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и воздушно-механической пены средней кратности с кратностью от 25 до 70 при их соответствующем соотношении по расходу используемого для их образования раствора пенообразователя от 8:1 до 1:1.

5. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену средней кратности с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и воздушно-механической пены средней кратности с кратностью от 25 до 70 при их соответствующем объемном соотношении от 0,1 до 1,0.

6. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения воздушно-механической пены низкой и средней кратности, формируемых вспениванием воздухом водного раствора пенообразователя.

7. Способ по п. 1, отличающийся тем, что на поверхность разлива сжиженного газа наносят гибридную водовоздушную пену с кратностью от 20 до 40, получаемую в результате турбулентного перемешивания в процессе спутного движения под напором 0,6-1,4, преимущественно 0,8-1,2 МПа струй воздушно-механической пены низкой кратности с кратностью от 5 до 15 и струй воздушно-механической пены средней кратности с кратностью от 25 до 70.

8. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену наносят на поверхность разлива сжиженного газа с интенсивностью ее подачи не менее 0,5-1,0 л/с на м2 поверхности разлива сжиженного газа по раствору пенообразователя.

9. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену наносят на поверхность разлива сжиженного газа в течение времени не более 1-25 секунд после разлива сжиженного газа.

10. Способ по п. 1, отличающийся тем, что утилизацию испаряющегося из разлива газа осуществляют путем контролируемого его сжигания над слоем гибридной пены.

11. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену наносят на поверхность разлива сжиженного газа с получением слоя газонасыщенной пены, обеспечивающего снижение концентрации газа над поверхностью газонасыщенной пены ниже нижнего концентрационного предела распространения пламени.

12. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену наносят на поверхность разлива сжиженного газа с опережающей скоростью получения газонасыщенной пены на поверхности сжиженного газа относительно осредненной скорости восхождения потока испаряющегося газа.

13. Способ по любому из пп. 11, 12, отличающийся тем, что утилизацию испаряющегося из разлива газа осуществляют путем контролируемого его сжигания над слоем гибридной пены на месте разлива сжиженного газа.

14. Способ по любому из пп. 11, 12, отличающийся тем, что утилизацию испаряющегося из разлива газа осуществляют путем контролируемого сжигания газонасыщенной пены на месте разлива сжиженного газа.

15. Способ по любому из пп. 11, 12, отличающийся тем, что утилизацию испаряющегося из разлива газа осуществляют путем естественного или искусственного разрушения газонасыщенной пены с последующим проветриванием или выветриванием места утилизации до объемных концентраций газа ниже нижнего концентрационного предела распространения пламени.

16. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа посредством средств генерации пены низкой и средней кратности с автоматической, ручной или дистанционной системой управления и/или осцилированием.

17. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа посредством средств генерации пены низкой и средней кратности, установленных на объектах производства, хранения, переработки или транспортировки сжиженного газа.

18. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа посредством средств генерации пены низкой и средней кратности, стационарно установленных на объектах с высокой степенью пожаровзрывоопасности.

19. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа посредством средств генерации воздушно-механической пены низкой и средней кратности, установленных на мобильных железнодорожных, воздушных, водоплавающих или автомобильных транспортных средствах или прицепах.

20. Способ по п. 1, отличающийся тем, что гибридную водовоздушную пену получают и наносят на поверхность разлива сжиженного газа посредством средств генерации воздушно-механической пены низкой и средней кратности, размещенных в контейнерах, установленных на палубах морских судов и морских платформ или на транспортных средствах объектов берегового базирования.

21. Система ликвидации аварийных разливов сжиженного природного газа или сжиженного углеводородного газа, отличающаяся тем, что содержит средства генерации воздушно-механической пены низкой кратности и средства генерации воздушно-механической пены средней кратности, изготовленные с возможностью получения и нанесения на поверхность разлива сжиженного газа по крайней мере одной струи гибридной водовоздушной пены, получаемой в результате турбулентного перемешивания в процессе спутного движения струй воздушно-механической пены низкой кратности и воздушно-механической пены средней кратности.

22. Система по п. 21, отличающаяся тем, что содержит средства генерации воздушно-механической пены с кратностью от 5 до 15 и средства генерации воздушно-механической пены с кратностью от 25 до 70, изготовленные с возможностью получения и нанесения на поверхность разлива сжиженного газа по крайней мере одной струи гибридной водовоздушной пены с кратностью от 25 до 40, получаемой в результате турбулентного перемешивания в процессе спутного движения струй воздушно-механической пены с кратностью от 5 до 15 и воздушно-механической пены с кратностью от 25 до 70.

23. Система по п. 21, отличающаяся тем, что выполнена с возможностью реализации способа по любому из пп. с 1 по 19.

24. Система по п. 21, отличающаяся тем, что средства генерации пены низкой и средней кратности изготовлены с автоматическим, ручным или дистанционным управлением и/или осцилированием.

25. Система по п. 21, отличающаяся тем, что средства генерации пены низкой и средней кратности изготовлены установленными на объектах производства, хранения, переработки или транспортировки сжиженного газа.

26. Система по п. 21, отличающаяся тем, что средства генерации пены низкой и средней кратности изготовлены стационарно установленными на объектах с высокой степенью пожаровзрывоопасности.

27. Система по п. 21, отличающаяся тем, что средства генерации пены низкой и средней кратности изготовлены установленными на мобильных железнодорожных, воздушных, водоплавающих или автомобильных транспортных средствах или прицепах.

28. Система по п. 21, отличающаяся тем, что средства генерации пены низкой и средней кратности изготовлены установленными на палубах морских судов и морских платформ или на транспортных средствах объектов берегового базирования.

Документы, цитированные в отчете о поиске Патент 2021 года RU2744719C1

СПОСОБ ЛИКВИДАЦИИ АВАРИЙНЫХ РАЗЛИВОВ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ИЛИ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА КОМБИНИРОВАННОЙ ВОДОВОЗДУШНОЙ ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2552969C1
Способ комбинированного тушения пожаров горючих и легковоспламеняющихся жидкостей 2015
  • Забегаев Владимир Иванович
RU2615956C1
CN 110384883 A, 29.10.2019
Способ получения трехфазной пены и устройство для его осуществления 1990
  • Мельников Владимир Павлович
  • Смульский Иосиф Иосифович
  • Феклистов Владимир Николаевич
  • Шрейбер Исаак Рувимович
SU1775147A1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ВЗРЫВА И ЛОКАЛИЗАЦИИ АВАРИЙНОГО РОЗЛИВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА КОМБИНИРОВАННОЙ ВОДОВОЗДУШНОЙ ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ И ОГНЕТУШАЩИМ СРЕДСТВОМ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Абдурагимов Иосиф Микаэлевич
  • Куприн Геннадий Николаевич
RU2589562C2

RU 2 744 719 C1

Авторы

Куприн Геннадий Николаевич

Куприн Алексей Геннадьевич

Куприн Сергей Геннадьевич

Куприн Денис Сергеевич

Даты

2021-03-15Публикация

2020-04-14Подача