Изобретение относится к радиоэлектронике и может быть использовано для защиты радиоэлектронной аппаратуры (РЭА) от сверхкоротких импульсов (СКИ).
Непрерывно растущая сложность современной РЭА приводит к обострению проблемы обеспечения электромагнитной совместимости (ЭМС). Защита РЭА от кондуктивных помех является одной из основных задач ЭМС. Кондуктивный способ распространения помеховых сигналов подразумевает их проникновение в РЭА непосредственно по проводникам. Особо опасны СКИ, которые представляют собой мощные импульсные сигналы малой длительности (нано- и субнаносекундный диапазоны) с широким спектром, воздействие которых может привести к различным негативным последствиям в работе РЭА. Между тем традиционные средства защиты от импульсных помех обладают рядом недостатков (уязвимость к радиации, малый срок службы, отказ в работе при высоких напряжениях, недостаточное быстродействие и т.д.), затрудняющих защиту от мощных СКИ, что, в свою очередь, требует исследования дополнительных мер защиты РЭА. Кроме того, известны устройства, функционирующие по принципу модальной фильтрации: модальные фильтры (МФ) и меандровые линии задержки (или защитные меандры). Из-за сильной связи между активным и пассивным(-и) проводниками, в таких устройствах существует возможность разложения воздействующего СКИ на последовательность импульсов меньшей амплитуды. Между тем, наряду с высокими характеристиками, практика требует простоты реализации, малой массы и дешевизны устройств защиты, поэтому актуально их дальнейшее совершенствование.
Наиболее близким к заявляемому техническим решением является способ модального разложения импульса в кабеле [Самотин И.Е. Устройства защиты вычислительной техники и систем управления путем модального разложения импульсов помех в кабельных и полосковых структурах. Дисс. на соиск. уч. ст. канд. техн. наук. - Томск, 2011. - 199 с.], когда плоские трехпроводные силовые кабели, наряду с их основным назначением, могут использоваться в качестве защиты от импульсов, длительность которых меньше разности задержек мод кабеля.
Недостатком такого технического решения является использование пассивного проводника, увеличивающего массу изделия.
Предлагается способ трассировки круглых проводников, включающий трассировку центрального опорного проводника в круглом диэлектрическом слое, по краям которого симметрично расположены два других проводника - активный и пассивный, а вся структура помещена во внешний диэлектрический слой, длина проводников выбрана так, что её произведение на модуль разности погонных задержек мод не меньше суммы длительностей фронта, плоской вершины и спада импульса, подающегося между активным и опорным проводниками, при этом внешний диэлектрический слой выполнен круглым, а пассивный проводник - полым.
Техническим результатом является уменьшенная масса проводников при сохранении разложения помехового импульса на последовательность импульсов меньшей амплитуды. Технический результат достигается за счет использования полого пассивного проводника. Такой способ открывает возможность защиты от помех при уменьшенной массе проводников, что крайне важно, например, для космической отрасли. Приведенные выше качественные оценки достижимости технического результата подтверждаются количественными оценками, приведенными ниже, полученными с помощью моделирования.
Достижимость технического результата продемонстрирована на примере распространения импульсной помехи с ЭДС 1 В и длительностями фронта, спада и плоской вершины по 100 пс в структуре с круговым сечением длиной 100 см (фиг. 1), где r1 - радиус проводников (0,09 см), r2 - радиус внутреннего диэлектрического слоя (0,17 см), r3 - радиус внешнего диэлектрического слоя (0,35 см), g - толщина стенки полого проводника (0,01 см), εr1 - относительная диэлектрическая проницаемость воздуха (1), εr2 - относительная диэлектрическая проницаемость внутреннего диэлектрического слоя (10), εr3 - относительная диэлектрическая проницаемость внешнего диэлектрического слоя (5). Проводники 1 и 2 расположены симметрично друг другу на разных сторонах внутреннего диэлектрического слоя, а второй проводник - полый.
На фиг. 2 приведена эквивалентная схема структуры. Она состоит из двух (не считая опорного) проводников длиной l, равной 100 cм. Первый проводник соединен на одном конце с источником импульсных сигналов, представленным на схеме идеальным источником ЭДС E с внутренним сопротивлением RГ, а на другом конце соединен с защищаемой цепью, представленной на схеме эквивалентным сопротивлением RН. Резисторы R подсоединены в начале и конце второго (пассивного) проводника. Значения резисторов RГ, RН и R приняты равными среднегеометрическому значению волновых сопротивлений четной (36,2 Ом) и нечетной (46,9 Ом) мод, равному 41,2 Ом.
На фиг. 3 показаны формы ЭДС и напряжений на входе и выходе структуры с полым пассивным проводником. Видно, что при прохождении по линии СКИ раскладывается на 2 импульса. Максимальное напряжение на выходе составляет 0,249 В и не превышает 50% от половины ЭДС.
Параметры поперечного сечения и длина линии обеспечивают условие
|∆τ|l ≥ tr + td + tf, (1)
где ∆τ - разность погонных задержек мод линии, а tr, td, tf - длительности фронта, плоской вершины и спада импульса соответственно.
Выполнение условия (1) обеспечивает разложение исходного сигнала на импульсы мод, погонные задержки которых равны 7,93 и 9,26 нс/м (вычисленные как корень квадратный из собственных значений произведения матриц погонных коэффициентов электромагнитной (L) и электростатической (C) индукции). Значение разности погонных задержек мод равно 1,33 нс/м, следовательно, полное разложение СКИ длительностью t∑ в отрезке линии передачи длиной l возможно при условии
t ∑ ⁄ l < 1,33 нс/м (2)
Учитывая условия (1) и (2), при указанных значениях параметров линии максимальная длительность входного сигнала t∑ при длине линии 100 cм равна 1,33 нс.
При r1=0,09 см, g=0,01 см l=100 cм и плотности меди ρ=8,96 г/см3 рассчитывается объем сплошного проводника с помощью выражения
V = πr12l (3)
Объем сплошного проводника составляет 2,54 см3. Масса сплошного проводника вычисляется как
m = Vρ (4)
Масса сплошного проводника составляет 22,8 г. Объем полости проводника вычисляется с помощью выражения
V вн = π(r1 - g)2l (5)
Объем полости проводника составляет 2,01 см3. Тогда масса полого проводника вычисляется как
m пол = (V - Vвн)ρ (6)
Масса полого проводника составляет 4,74 г, что почти в 5 раз меньше массы сплошного проводника.
Таким образом, показан технический результат - уменьшенная масса проводников при сохранении разложения помехового импульса на последовательность импульсов меньшей амплитуды.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТРАССИРОВКИ ПРОВОДНИКОВ МОДАЛЬНОГО ФИЛЬТРА НА ОСНОВЕ ПЛОСКОГО КАБЕЛЯ | 2020 |
|
RU2749994C1 |
СПОСОБ ТРАССИРОВКИ ПРОВОДНИКОВ МОДАЛЬНОГО ФИЛЬТРА | 2020 |
|
RU2750393C1 |
СПОСОБ ИСПОЛНЕНИЯ МОДАЛЬНОГО ФИЛЬТРА С УГОЛКОВЫМ ПАССИВНЫМ ПРОВОДНИКОМ | 2022 |
|
RU2781266C1 |
ПОЛОСКОВАЯ СТРУКТУРА, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ В ДИФФЕРЕНЦИАЛЬНОМ И СИНФАЗНОМ РЕЖИМАХ | 2020 |
|
RU2748423C1 |
ПОЛОСКОВАЯ СТРУКТУРА С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ В СИНФАЗНОМ И ДИФФЕРЕНЦИАЛЬНОМ РЕЖИМАХ | 2024 |
|
RU2823269C1 |
СПОСОБ ТРАССИРОВКИ ДВУХСТОРОННЕЙ ПЕЧАТНОЙ ПЛАТЫ С МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ И УМЕНЬШЕННЫМ КОЛИЧЕСТВОМ ПРОВОДНИКОВ | 2022 |
|
RU2784710C1 |
СПОСОБ ОДНОКРАТНОГО МОДАЛЬНОГО РЕЗЕРВИРОВАНИЯ МЕЖСОЕДИНЕНИЙ | 2019 |
|
RU2732607C1 |
СПОСОБ ТРАССИРОВКИ ДВУХСТОРОННЕЙ ПЕЧАТНОЙ ПЛАТЫ ДЛЯ ЦЕПЕЙ С МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ | 2021 |
|
RU2762336C1 |
СПОСОБ ТРЁХКРАТНОГО РЕЗЕРВИРОВАНИЯ МЕЖСОЕДИНЕНИЙ | 2019 |
|
RU2738955C1 |
ЗЕРКАЛЬНО-СИММЕТРИЧНАЯ МЕАНДРОВАЯ ЛИНИЯ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2019 |
|
RU2726743C1 |
Использование: в области электротехники для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Технический результат - уменьшенная масса проводников при сохранении разложения помехового импульса на последовательность импульсов меньшей амплитуды. Способ трассировки круглых проводников включает трассировку центрального опорного проводника в круглом диэлектрическом слое, по краям которого симметрично расположены два других проводника - активный и пассивный, а вся структура помещена во внешний диэлектрический слой. Длина проводников выбрана так, что её произведение на модуль разности погонных задержек мод не меньше суммы длительностей фронта, плоской вершины и спада импульса, подающегося между активным и опорным проводниками. При этом внешний диэлектрический слой выполнен круглым, а пассивный проводник - полым. 3 ил.
Способ трассировки круглых проводников, включающий трассировку центрального опорного проводника в круглом диэлектрическом слое, по краям которого симметрично расположены два других проводника - активный и пассивный, а вся структура помещена во внешний диэлектрический слой, длина проводников выбрана так, что её произведение на модуль разности погонных задержек мод не меньше суммы длительностей фронта, плоской вершины и спада импульса, подающегося между активным и опорным проводниками, при этом внешний диэлектрический слой выполнен круглым, а пассивный проводник - полым.
Способ обработки земляных форм огнеупорными красителями | 1948 |
|
SU79335A1 |
Устройство для измерения энергии колебаний, излучаемой механизмами в опорные связи | 1961 |
|
SU147789A1 |
УСТРОЙСТВО ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ СИГНАЛОВ | 2010 |
|
RU2431912C1 |
Преобразователь позиционного кода в код системы остаточных классов | 1988 |
|
SU1557682A1 |
Авторы
Даты
2021-04-27—Публикация
2020-09-15—Подача