Способ изготовления мелкозалегающих переходов Российский патент 2021 года по МПК H01L21/265 H01L21/324 

Описание патента на изобретение RU2748335C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженным значением тока утечки.

Известен способ изготовления комплементарных полевых транзисторов [Пат.5290720 США, МКИ H01L 21/265] путем формирования самосовмещенных силицидных затворных электродов. Исходная структура с поликремниевыми затворами над соседними карманами р- и п- типа покрывается слоями оксида кремния и стекла. Реактивным ионным травлением формируются пристеночные кремниевые спейсеры, слой стекла удаляется, проводится ионная имплантация в области истока и стока, затворные структуры покрываются тонким слоем оксида, создаются пристеночные нитрид кремниевые Si3N4 спейсеры, слой оксида удаляется, наносится слой титана Ti и проводится термообработка с образованием силицидной перемычки между поликремниевым электродом и боковыми кремниевыми электродами.

В таких приборах из-за не технологичности формирования пристеночных кремниевых спейсеров образуется большое количество дефектов, которые ухудшают электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Заявка 2133964 Япония, МКИ H01L 29/46] путем добавления 1-10ат.% углерода в слой нитрида титана TiN, который служит в качестве барьерного слоя. Такая добавка улучшает качество нитрида титана TiN, предохраняет его от появления механических напряжений и растрескиваний после термообработок. При введении углерода сохраняется сопротивление слоя нитрида титана TiN.

Недостатками этого способа являются: высокие значения токов утечек, высокая дефектность, низкая технологичность.

Задача, решаемая изобретением: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается диффузией примеси из легированного слоя силицида, который формируется: путем нанесения слоя титана Ti толщиной 110нм и термообработкой при температуре 950°С, в течение 70 с в атмосфере азота N2, с последующим выращиванием пленки пиролитического окисла толщиной 150 нм и проведением ионной имплантации бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и затем термообработкой при температуре 900°С в течение 20 с, в атмосфере азота N2.

Технология способа состоит в следующем: на кремниевую подложку п-типа проводимости с удельным сопротивлением 4,5 Ом*см, наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°С, в течение 70с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и последующей термообработкой при температуре 900°С в течение 20с, в атмосфере азота N2. Слой титана Ti и пленку пиролитического окисла формировали по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Таблица

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии плотность дефектов, см-2 токи утечки,
1012,А,
плотность дефектов, см-2 токи утечки,
1012,А,
1 23 5,3 7,2 1,7 2 24 7.5 6,2 1,3 3 28 7,8 6,7 1,9 4 27 8,3 5,4 1,4 5 24 8,5 5,1 1,8 6 26 5,7 6,3 1,3 7 22 8,4 7,4 1,7 8 27 7,7 4,8 1,6 9 25 7,5 5,3 1,4 10 26 0,76 5,4 1,9 11 23 7,1 6,1 1,3 12 21 6,7 7,3 1,6 13 22 6,8 8,1 1,5

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 16,9 %.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления мелкозалегающих переходов путем формирования их диффузией примеси из легированного слоя силицида, который формируется: путем нанесения слоя титана Ti толщиной 110 нм и термообработкой при температуре 950 °С, в течение 70 с в атмосфере азота N2, с последующим выращиванием пленки пиролитического окисла толщиной 150 нм и проведением ионной имплантации бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и затем термообработкой при температуре 900 °С в течение 20 с, в атмосфере азота N2, позволяет повысит процент выхода годных приборов и улучшит их надёжность.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Похожие патенты RU2748335C1

название год авторы номер документа
Способ изготовления силицида титана 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
RU2751983C1
Способ изготовления мелкозалегающих переходов 2021
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2757539C1
Способ изготовления силицида никеля 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2734095C1
Способ изготовления полупроводникового прибора 2017
  • Хасанов Асламбек Идрисович
  • Кутуев Руслан Азаевич
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2659328C1
Способ изготовления полупроводниковой структуры 2016
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2629655C2
Способ изготовления полупроводникового прибора 2016
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
  • Хасанов Асламбек Идрисович
RU2633799C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО ТРАНЗИСТОРА 2012
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Уянаева Марьям Мустафаевна
RU2522930C2
Способ изготовления полупроводникового прибора 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2688874C1
Способ изготовления полупроводникового прибора 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2688866C1
Способ изготовления полупроводникового прибора 2015
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2606246C2

Реферат патента 2021 года Способ изготовления мелкозалегающих переходов

Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования активных областей полевых транзисторов включает формирование активных областей полевого транзистора на кремниевой подложке n-типа проводимости с удельным сопротивлением 4,5 Ом*см. На подложку наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°C в течение 70 с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150 нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и с последующей термообработкой при температуре 900°C в течение 20 с в атмосфере азота N2. Изобретение обеспечивает снижение токов утечек, технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Формула изобретения RU 2 748 335 C1

Способ формирования активных областей полевых транзисторов, включающий формирование активных областей полевого транзистора на кремниевой подложке, отличающийся тем, что формирование активных областей полевого транзистора осуществляют на кремниевой подложке n-типа проводимости с удельным сопротивлением 4,5 Ом*см, на которую наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°C в течение 70 с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150 нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и с последующей термообработкой при температуре 900°C в течение 20 с в атмосфере азота N2.

RU 2 748 335 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Черкесова Наталья Васильевна

Даты

2021-05-24Публикация

2020-09-02Подача