Способ изготовления полупроводникового прибора Российский патент 2021 года по МПК H01L21/265 H01L21/268 H01L21/324 

Описание патента на изобретение RU2751982C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления.

Известен способ изготовления полупроводникового прибора [Патент 5110749 США, МКИ H01L 21/265] путем формирования чередующиеся n+ карманы глубиной 2 мкм, имплантацией ионов сурьмы в p-Si подложку, покрытые термическим диоксидом кремния. С последующей имплантацией ионов бора B+ промежутки между n+ карманами заполняются p-областями глубиной 2 мкм. Затем проводится имплантация ионов фосфора P + с энергией 2 МэВ с образованием под p-областями скрытых n- слоев, изолирующих p-области от подложки. Далее наращивается эпитаксиальный n- слой и формируется структура биполярного транзистора. В таких приборах из-за высокой энергии ионов фосфора образуются большое количество дефектов, которые ухудшают характеристики приборов и повышаются токи утечки.

Известен способ изготовления полупроводникового прибора [Пат. 5163178 США, МКИ H01L 29/72], в котором тип проводимости подложки соответствует типу проводимости области базы прибора. Эмиттерный и коллекторный электроды создают путем локального легирования поверхности подложки через окна, сформированные с применением фотолитографии, ширина базы определяется расстоянием между легированными областями. Затем проводят повторный процесс легирования удаленных от базы частей электродов эмиттера и коллектора, повышая в них концентрации легирующих примесей.

Недостатками способа являются:

- низкие значения параметра коэффициента усиления;

- повышенная значения токов утечек;

- низкая технологичность.

Задача, решаемая изобретением: повышения коэффициента усиления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных

Задача решается формированием области эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С.

Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентацией (100) формируют эпитаксиальный слой n-типа проводимости и базовый слой, соответствующий типу проводимости подложки по стандартной технологии. Затем формируют слой эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Контакты к областям базы, коллектора и эмиттера формировали по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии коэффициент усиления Ток утечки
Iут*1011 А
коэффициент усиления Ток утечки
Iут*1011 А
1 48 10,5 83 1,6 2 44 11,7 84 1,3 3 45 10,4 77 1,5 4 52 11,5 79 1,7 5 54 9,8 85 1,1 6 46 9,7 83 1,2 7 52 10,3 81 1,5 8 47 10,6 86 1,4 9 53 11,2 82 1,3 10 49 11,7 78 1,5 11 45 9,5 76 1,7 12 51 11,4 84 1,3 13 52 10,8 85 1,2

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 18,4%.

Технический результат: повышения коэффициента усиления, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводникового прибора путем формирования области эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/ см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С, позволяет повысит процент выхода годных приборов и улучшит их надёжность.

Похожие патенты RU2751982C1

название год авторы номер документа
Способ изготовления полупроводникового прибора 2021
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2770135C1
Способ изготовления радиационно стойкого полупроводникового прибора 2022
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2794041C1
Способ изготовления полупроводникового прибора 2017
  • Хасанов Асламбек Идрисович
  • Кутуев Руслан Азаевич
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2659328C1
Способ изготовления полупроводникового прибора 2017
  • Кутуев Руслан Азаевич
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2650350C1
Способ изготовления полупроводниковой структуры 2016
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2629655C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2008
  • Мустафаев Абдулла Гасанович
  • Мустафаев Гасан Абакарович
  • Мустафаев Арслан Гасанович
RU2388108C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ 2012
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Мустафаев Марат Гусейнович
RU2515335C2
Способ изготовления полупроводникового прибора 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2688866C1
Способ изготовления полупроводникового прибора 2019
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
  • Багов Артур Мишевич
RU2734060C1
СПОСОБ ПОЛУЧЕНИЯ СТРУКТУР С ЗАХОРОНЕННЫМ МЕТАЛЛИЧЕСКИМ СЛОЕМ 1992
  • Двуреченский А.В.
  • Александров Л.Н.
  • Баландин В.Ю.
RU2045795C1

Реферат патента 2021 года Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления. Способ изготовления полупроводникового прибора включает формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, при этом область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надёжность. 1 табл.

Формула изобретения RU 2 751 982 C1

Способ изготовления полупроводникового прибора, включающий формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, отличающийся тем, что область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С.

Документы, цитированные в отчете о поиске Патент 2021 года RU2751982C1

Способ изготовления полупроводникового прибора 2017
  • Хасанов Асламбек Идрисович
  • Кутуев Руслан Азаевич
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2659328C1
US 5110749 A, 05.05.1992
US 4523370 A1, 18.06.1985
JP 59197129 A, 08.11.1984
JP 56050560 A, 07.05.1981.

RU 2 751 982 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Черкесова Наталья Васильевна

Даты

2021-07-21Публикация

2020-03-18Подача