Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления.
Известен способ изготовления полупроводникового прибора [Патент 5110749 США, МКИ H01L 21/265] путем формирования чередующиеся n+ карманы глубиной 2 мкм, имплантацией ионов сурьмы в p-Si подложку, покрытые термическим диоксидом кремния. С последующей имплантацией ионов бора B+ промежутки между n+ карманами заполняются p-областями глубиной 2 мкм. Затем проводится имплантация ионов фосфора P + с энергией 2 МэВ с образованием под p-областями скрытых n- слоев, изолирующих p-области от подложки. Далее наращивается эпитаксиальный n- слой и формируется структура биполярного транзистора. В таких приборах из-за высокой энергии ионов фосфора образуются большое количество дефектов, которые ухудшают характеристики приборов и повышаются токи утечки.
Известен способ изготовления полупроводникового прибора [Пат. 5163178 США, МКИ H01L 29/72], в котором тип проводимости подложки соответствует типу проводимости области базы прибора. Эмиттерный и коллекторный электроды создают путем локального легирования поверхности подложки через окна, сформированные с применением фотолитографии, ширина базы определяется расстоянием между легированными областями. Затем проводят повторный процесс легирования удаленных от базы частей электродов эмиттера и коллектора, повышая в них концентрации легирующих примесей.
Недостатками способа являются:
- низкие значения параметра коэффициента усиления;
- повышенная значения токов утечек;
- низкая технологичность.
Задача, решаемая изобретением: повышения коэффициента усиления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных
Задача решается формированием области эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С.
Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентацией (100) формируют эпитаксиальный слой n-типа проводимости и базовый слой, соответствующий типу проводимости подложки по стандартной технологии. Затем формируют слой эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Контакты к областям базы, коллектора и эмиттера формировали по стандартной технологии.
По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.
Iут*1011 А
Iут*1011 А
Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 18,4%.
Технический результат: повышения коэффициента усиления, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.
Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.
Предложенный способ изготовления полупроводникового прибора путем формирования области эмиттера ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06мкм, длительность импульсов 50 нс, энергия импульсов 3-5 Дж/ см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С, позволяет повысит процент выхода годных приборов и улучшит их надёжность.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления полупроводникового прибора | 2021 |
|
RU2770135C1 |
Способ изготовления радиационно стойкого полупроводникового прибора | 2022 |
|
RU2794041C1 |
Способ изготовления полупроводникового прибора | 2017 |
|
RU2659328C1 |
Способ изготовления полупроводникового прибора | 2017 |
|
RU2650350C1 |
Способ изготовления полупроводниковой структуры | 2016 |
|
RU2629655C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА | 2008 |
|
RU2388108C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ | 2012 |
|
RU2515335C2 |
Способ изготовления полупроводникового прибора | 2018 |
|
RU2688866C1 |
Способ изготовления полупроводникового прибора | 2019 |
|
RU2734060C1 |
СПОСОБ ПОЛУЧЕНИЯ СТРУКТУР С ЗАХОРОНЕННЫМ МЕТАЛЛИЧЕСКИМ СЛОЕМ | 1992 |
|
RU2045795C1 |
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с повышенным коэффициентом усиления. Способ изготовления полупроводникового прибора включает формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, при этом область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надёжность. 1 табл.
Способ изготовления полупроводникового прибора, включающий формирование на кремниевой подложке эпитаксиального слоя, областей коллектора, базы и эмиттера, отличающийся тем, что область эмиттера формируют ионным внедрением мышьяка с энергией 50 кэВ, дозой 1*1015-1*1016 см-2, с последующим лазерным отжигом с длиной волны излучения 1,06 мкм, длительность импульсов 50 нс, энергией импульсов 3-5 Дж/см2, в атмосфере азота, со скоростью сканирования 12,5 см/с, при температуре 150°С.
Способ изготовления полупроводникового прибора | 2017 |
|
RU2659328C1 |
US 5110749 A, 05.05.1992 | |||
US 4523370 A1, 18.06.1985 | |||
JP 59197129 A, 08.11.1984 | |||
JP 56050560 A, 07.05.1981. |
Авторы
Даты
2021-07-21—Публикация
2020-03-18—Подача