Способ дезактивации крупногабаритного емкостного оборудования от радиоактивных загрязнений без предварительного фрагментирования методом контактного ультразвукового воздействия Российский патент 2021 года по МПК G21F9/34 

Описание патента на изобретение RU2753419C1

Изобретение относится к атомной промышленности и может применяться для дезактивации крупногабаритного емкостного оборудования, например на стадиях подготовки к выводу из эксплуатации и выводе из эксплуатации ядерно- и радиационно-опасных объектов, на объектах использования атомной энергии (ОИАЭ).

На ОИАЭ в большом количестве накоплены и постоянно образуются металлические радиоактивные отходы, представляющие собой крупногабаритное емкостное оборудование, такое как выпарные аппараты, емкости для хранения жидких радиоактивных отходов, емкости для хранения и транспортирования радиоактивных продуктов (например, гексафторида урана), отличающиеся массивным корпусом. При подготовке к выводу и во время вывода из эксплуатации данного оборудования, загрязненного радиоактивными веществами, для его утилизации или возврата в народное хозяйство его необходимо дезактивировать.

Известен способ дезактивации оборудования от поверхностных радиоактивных загрязнений путем воздействия ультразвука на поверхность через жидкую среду (дезактивирующую жидкость) воздействие ультразвука на дезактивируемую поверхность производят через водную глинистую суспензию, содержащую частицы, оказывающие абразивное воздействие на дезактивируемую поверхность. Отработанный раствор, вобравший в себя удаленные с поверхности оборудования радиоактивные загрязнения, подсушивают, формуют, затем термообрабатывают, переводя в керамическую матрицу, которая фиксирует в себе загрязнения. Абразивные частицы при этом служат отощителем для глины (RU 2328785, МПК G21F 9/28, G21F 9/16, опубл. 10.07.2008).

Недостатком известного способа является то, что ультразвуковой излучатель устанавливается на подвижную каретку и перемещается вдоль дезактивируемой детали. Таким образом, ультразвуковое воздействие является локальным и действует исключительно на участок детали, на который направлен акустический поток. Такое расположение ультразвукового излучателя будет не эффективно при озвучивании внутренней поверхности крупногабаритных емкостей, в связи со сложной механикой перемещения ультразвукового излучателя.

Для дезактивации крупногабаритных емкостей известными методами, например, такими как жидкостная химическая дезактивация, требуется предварительное фрагментирование емкости на части подходящего размера для размещения в ваннах дезактивации. Но, так как мощность дозы излучения от оборудования зачастую очень высока, фрагментирование становиться практически невыполнимой задачей.

Так как радиоактивное загрязнение в основном находится на внутренних стенках и дне емкости, для снижения мощности излучения необходимо дезактивировать внутреннюю поверхность емкости. Так как простая химическая дезактивация обычно имеет низкую эффективность по отношению к прочнофиксированным загрязнениям и низкую скорость дезактивации, в изобретении предлагается интенсифицировать процесс химической дезактивации ультразвуковым воздействием.

Известен способ дезактивации оборудования от радиоактивных загрязнений, заключающийся в том, что дезактивируемое оборудование помещают в ванну с дезактивирующим раствором и воздействуют на него ультразвуковыми колебаниями. При этом колебания возбуждают во всем объеме оборудования путем обеспечения жесткого акустического контакта поверхности оборудования с акустическими ультразвуковыми излучателями, причем колебания возбуждают в виде импульсов с частотой, соответствующей резонансной частоте нагруженных на оборудование излучателей (RU 2510667, МПК G21F 9/28, опубл. 10.04.2014).

Недостатком данного способа является то, что дезактивируемый объект должен полностью помещаться в ванну с дезактивирующим раствором, то есть ванна должна быть больше дезактивируемого объекта. Таким образом, способ может применяться только для относительно небольших по размерам емкостей и теряет целесообразность при дезактивации крупногабаритных емкостей.

Техническим результатом, достигаемым при использовании изобретения, является дезактивация внутренней поверхности крупногабаритного емкостного оборудования, позволяющая полностью или частично снизить радиационный фон и обеспечить возможность фрагментирования данного оборудования для последующей утилизации.

Сущность изобретения заключается в том, что в способе дезактивации крупногабаритного емкостного оборудования от радиоактивных загрязнений без предварительного фрагментирования методом контактного ультразвукового воздействия ультразвуковые излучатели монтируют на стенки дезактивируемой емкости снаружи, дезактивируемая емкость заполняют дезактивирующим раствором до необходимого уровня, колебания от ультразвуковых излучателей передаются на внутреннюю поверхность емкости и интенсифицируют процесс химической дезактивации и растворения отложений внутри емкости, после чего отработавший дезактивирующий раствор, вобравший в себя удаленные радиоактивные загрязнения, удаляют из обрабатываемой дезактивируемой емкости. Для усиления ультразвукового воздействия на донные и пристеночные отложения внутрь дезактивируемой емкости опускают ультразвуковой погружной блок с, по меньшей мере, одним фокусирующим ультразвуковым излучателем, при этом воздействие фокусирующих ультразвуковых излучателей ультразвукового погружного блока осуществляют через залитый в дезактивируемую емкость дезактивирующий раствор.

На фиг. 1 представлен пример 1 реализации способа, на фиг. 2 представлен пример 2 реализации способа, на фиг. 3 представлен ультразвуковой погружной блок с фокусирующими ультразвуковыми излучателями, размещенными в дне блока, на фиг. 4 представлен ультразвуковой погружной блок с фокусирующими ультразвуковыми излучателями, размещенными в дне и боковых стенках блока.

Способ осуществляют следующим образом.

Пример 1. В заявленном изобретении дезактивирующий раствор 1 заливают непосредственно в дезактивируемую емкость 2, а ультразвуковые излучатели 3 монтируют (крепят) к наружной поверхности емкости 2 (фиг. 1). При работе ультразвуковых излучателей 3 колебания передаются на внутреннюю поверхность емкости 2 и интенсифицируют процесс химической дезактивации и растворения отложений 4 внутри емкости 2. Рабочую частоту ультразвуковых колебаний устанавливают в диапазоне от 17 до 40 кГц. При этом уровень заливаемого в емкость 2 дезактивирующего раствора 1 можно выбирать исходя из характера и расположения отложений 4. Например, если на дне емкости 2 имеются труднорастворимые отложения 4, отличающиеся по сложности удаления от загрязнений верхней части емкости 2, то целесообразно сначала удалить их. Для этого емкость 2 заполняют дезактивирующим раствором 1 не полностью, а только чтобы скрыть донные отложения 4. После удаления донных отложений 4 заполняют емкость 2 дезактивирующим раствором 1 полностью и дезактивируют ее. Такой способ позволяет экономить химические реагенты.

Крепление ультразвуковых излучателей 3 осуществляют таким образом, чтобы обеспечивался жесткий акустический контакт с емкостью 2 (сварное соединение, резьбовое соединение, плотный прижим). Количество ультразвуковых излучателей 3 и места их размещения подбирают исходя из габаритов и конструктивных особенностей дезактивируемой емкости 2. Эффективная ультразвуковая частота колебаний выбирается в процессе настройки ультразвуковых генераторов из основных или дополнительных гармоник резонансной частоты ультразвуковых излучателей 3.

В зависимости от природы загрязнений в качестве дезактивирующего раствора 1 могут быть использованы различные растворы кислот и щелочей. Они могут использоваться как самостоятельно, так и циклично чередоваться (кислота – щелочь – кислота – щелочь…) для достижения максимально полной дезактивации.

После цикла обработки ультразвуком отработанный дезактивирующий раствор 1, вобравший в себя удаленные с поверхности оборудования радиоактивные загрязнения, удаляется из обрабатываемой емкости 2, фильтруется и передается на переработку, либо после доукрепления может быть использован для следующего цикла.

Важной особенностью предлагаемого способа является то, что дезактивацию можно проводить непосредственно в месте размещения дезактивируемого объекта (например, в бетонном каньоне) и исключить какие-либо перемещения крупногабаритного радиационно-опасного объекта.

Пример 2. Способ отличается от примера 1 тем, что дополнительно применяется ультразвуковой погружной блок 5, опускаемый на дно дезактивируемой емкости 2 для усиления ультразвукового воздействия на донные и пристеночные отложения (фиг. 2). Воздействие ультразвуковых излучателей 6 блока 5 осуществляют через залитый в емкость 2 дезактивирующий раствор 1.

Ультразвуковой погружной блок 5 имеет размеры, позволяющие опускать его в емкость 2 через люк в верхней крышке.

Ультразвуковой погружной блок 5 имеет от одного до нескольких ультразвуковых фокусирующих излучателей 6, размещенных на нижней поверхности блока 5 (фиг. 3). Также ультразвуковые фокусирующие излучатели 6 могут размещаться на боковых стенках блока 5 для воздействия на пристеночные отложения (фиг. 4). Конструкция блока 5 также имеет ограждения 7 для защиты ультразвуковых фокусирующих излучателей 6 от механического воздействия. Данное ограждение 7 отставлено от излучающей поверхности излучателя 6 на такое расстояние, что при установке блока 5 на дно емкости 2 удаляемые отложения находятся на фокусном расстоянии от излучателя 6 и разрушаются наиболее эффективно.

По сравнению с известным решением заявленное изобретение позволяет проводить дезактивацию внутренней поверхности крупногабаритного емкостного оборудования, позволяющую полностью или частично снизить радиационный фон и обеспечить возможность фрагментирования данного оборудования для последующей утилизации.

Похожие патенты RU2753419C1

название год авторы номер документа
СПОСОБ ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ ОТ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Фомин Василий Викторович
  • Маргулис Игорь Мильевич
  • Скляров Александр Васильевич
  • Уфаев Николай Николаевич
  • Роменков Анатолий Анатольевич
  • Туктаров Марат Адельшович
  • Ермошин Федор Евгеньевич
RU2510667C2
СПОСОБ ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ ОТ ПОВЕРХНОСТНЫХ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ 2006
  • Дементьев Владимир Николаевич
  • Кадников Анатолий Александрович
  • Шастин Арнольд Георгиевич
  • Щеклеин Сергей Евгеньевич
  • Ярославцев Геннадий Федорович
RU2328785C1
СПОСОБ ДЕЗАКТИВАЦИИ 2009
  • Аксенов Василий Иванович
  • Шастин Арнольд Георгиевич
  • Щеклеин Сергей Евгеньевич
RU2416833C1
СПОСОБ ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ ОТ ПОВЕРХНОСТНЫХ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ 2006
  • Дементьев Владимир Николаевич
  • Кадников Анатолий Александрович
  • Шастин Арнольд Георгиевич
  • Щеклеин Сергей Евгеньевич
  • Ярославцев Геннадий Федорович
RU2329555C2
Способ локальной дезактивации металлических поверхностей с трудноудаляемыми радиоактивными загрязнениями 2019
  • Акатов Андрей Андреевич
  • Доильницын Валерий Афанасьевич
  • Коряковский Юрий Сергеевич
  • Нигматуллин Дамир Рамилевич
  • Лаздан Елизавета Эдуардовна
  • Лебедев Николай Михайлович
  • Кочкарев Виктор Григорьевич
  • Лазарев Василий Николаевич
RU2723635C1
СПОСОБ ДЕЗАКТИВАЦИИ РАДИОАКТИВНЫХ ОТХОДОВ 2021
  • Валов Дмитрий Анатольевич
  • Веселов Евгений Иванович
  • Федоров Денис Анатольевич
  • Акатов Андрей Андреевич
  • Доильницын Валерий Афанасьевич
  • Максимов Андрей Геннадьевич
RU2752240C1
СПОСОБ ОЧИСТКИ И ДЕЗАКТИВАЦИИ КОНТУРНОГО ОБОРУДОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ С ЖИДКОМЕТАЛЛИЧЕСКИМ СВИНЦОВО-ВИСМУТОВЫМ ТЕПЛОНОСИТЕЛЕМ 2011
  • Андрианов Анатолий Карпович
  • Кривобоков Виктор Васильевич
  • Москвин Леонид Николаевич
RU2459297C1
КОМПЛЕКСНАЯ УСТАНОВКА ДЕЗАКТИВАЦИИ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ И КОНДИЦИОНИРОВАНИЯ ОБРАЗУЮЩИХСЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2016
  • Лебедев Николай Михайлович
  • Коваленко Виктор Николаевич
  • Арефьева Анна Николаевна
  • Акатов Андрей Андреевич
  • Доильницын Валерий Афанасьевич
  • Коряковский Юрий Сергеевич
  • Черемисин Петр Иванович
RU2695811C2
СПОСОБ ДЕЗАКТИВАЦИИ ТРУБ И ТРУБНЫХ ПУЧКОВ - КИСЛОТНО-АБРАЗИВНАЯ ДЕЗАКТИВАЦИЯ 2011
  • Аксенов Василий Иванович
  • Кадников Анатолий Александрович
  • Минаев Владимир Игоревич
  • Шастин Арнольд Георгиевич
  • Щеклеин Сергей Евгеньевич
RU2505872C2
СПОСОБ ПЕРЕРАБОТКИ МЕТАЛЛОВ, СОДЕРЖАЩИХ ПРОЧНОФИКСИРОВАННЫЕ ПОВЕРХНОСТНЫЕ РАДИОАКТИВНЫЕ ЗАГРЯЗНЕНИЯ 2015
  • Лебедев Николай Михайлович
  • Коваленко Виктор Николаевич
  • Арефьева Анна Николаевна
  • Акатов Андрей Андреевич
  • Доильницын Валерий Афанасьевич
  • Коряковский Юрий Сергеевич
  • Черемисин Петр Иванович
RU2635202C2

Иллюстрации к изобретению RU 2 753 419 C1

Реферат патента 2021 года Способ дезактивации крупногабаритного емкостного оборудования от радиоактивных загрязнений без предварительного фрагментирования методом контактного ультразвукового воздействия

Изобретение относится к атомной промышленности и может применяться для дезактивации крупногабаритного емкостного оборудования, например, при подготовке к выводу из эксплуатации и в процессе вывода из эксплуатации ядерно- и радиационно-опасных объектов, на объектах использования атомной энергии. В способе дезактивации крупногабаритного емкостного оборудования ультразвуковые излучатели монтируют на стенки дезактивируемой емкости снаружи. Дезактивируемую емкость заполняют дезактивирующим раствором до необходимого уровня, колебания от ультразвуковых излучателей передаются на внутреннюю поверхность емкости и интенсифицируют процесс химической дезактивации и растворения отложений внутри емкости. Отработавший дезактивирующий раствор, вобравший в себя удаленные радиоактивные загрязнения, удаляют из обрабатываемой дезактивируемой емкости. Изобретение позволяет полностью или частично снизить радиационный фон и обеспечить возможность фрагментирования данного оборудования для последующей утилизации. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 753 419 C1

1. Способ дезактивации крупногабаритного емкостного оборудования от радиоактивных загрязнений без предварительного фрагментирования методом контактного ультразвукового воздействия, при котором ультразвуковые излучатели монтируют на стенки дезактивируемой емкости снаружи, дезактивируемую емкость заполняют дезактивирующим раствором до необходимого уровня, колебания от ультразвуковых излучателей передаются на внутреннюю поверхность емкости и интенсифицируют процесс химической дезактивации и растворения отложений внутри емкости, после чего отработавший дезактивирующий раствор, вобравший в себя удаленные радиоактивные загрязнения, удаляют из обрабатываемой дезактивируемой емкости.

2. Способ дезактивации крупногабаритного емкостного оборудования от радиоактивных загрязнений без предварительного фрагментирования методом контактного ультразвукового воздействия по п. 1, отличающийся тем, что для усиления ультразвукового воздействия на донные и пристеночные отложения внутрь дезактивируемой емкости опускают ультразвуковой погружной блок с, по меньшей мере одним фокусирующим ультразвуковым излучателем, при этом воздействие фокусирующих ультразвуковых излучателей ультразвукового погружного блока осуществляют через залитый в дезактивируемую емкость дезактивирующий раствор.

Документы, цитированные в отчете о поиске Патент 2021 года RU2753419C1

УЛЬТРАЗВУКОВАЯ УСТАНОВКА ДЛЯ ДЕЗАКТИВАЦИИ ПРИВОДОВ СУЗ 2016
  • Гаврилин Виктор Алексеевич
  • Горелкин Максим Викторович
  • Стребнев Александр Николаевич
RU2628758C1
УЛЬТРАЗВУКОВАЯ УСТАНОВКА ДЛЯ ДЕЗАКТИВАЦИИ МЕТАЛЛИЧЕСКИХ ДЕТАЛЕЙ 2008
  • Лебедев Николай Михайлович
  • Васильев Альберт Петрович
  • Дубинин Геннадий Владимирович
  • Коваленко Виктор Николаевич
  • Савкин Александр Евгеньевич
  • Сердитов Всеволод Юрьевич
  • Коняхин Анатолий Васильевич
RU2384906C2
СПОСОБ ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ ОТ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Фомин Василий Викторович
  • Маргулис Игорь Мильевич
  • Скляров Александр Васильевич
  • Уфаев Николай Николаевич
  • Роменков Анатолий Анатольевич
  • Туктаров Марат Адельшович
  • Ермошин Федор Евгеньевич
RU2510667C2
Зеркальный наблюдательный пункт 1952
  • Богоявленский Ф.В.
SU97156A1
ШТАММ БАКТЕРИЙ STREPTOCOCCUS THERMOPHILUS, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРИГОТОВЛЕНИЯ КИСЛОМОЛОЧНОГО ПРОДУКТА 2015
  • Бибарсова Альфия Алиевна
  • Семенова Елена Федоровна
  • Моисеева Инесса Яковлевна
  • Степанова Антонина Петровна
  • Маркелова Наталья Николаевна
RU2590716C1

RU 2 753 419 C1

Авторы

Лебедев Николай Михайлович

Грот Александр Николаевич

Доильницын Валерий Афанасьевич

Акатов Андрей Андреевич

Тинин Василий Владимирович

Васильев Альберт Петрович

Кочкарев Виктор Григорьевич

Лазарев Василий Николаевич

Даты

2021-08-16Публикация

2021-02-03Подача