ТАМПОНАЖНЫЙ ПОЛИМЕРНЫЙ СОСТАВ ДЛЯ ВЫСОКИХ ТЕМПЕРАТУР Российский патент 2021 года по МПК C09K8/508 E21B33/138 

Описание патента на изобретение RU2754527C1

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции или ограничения водопритока, для выравнивания профиля приемистости, ликвидации зон поглощений высокотемпературных скважин.

Известен вязкоупругий состав для изоляционных работ в скважинах, содержащий полиакриламид, сшивающий агент нитрат хрома, регулятор гелеобразования сульфаминовую кислоту, наполнитель органоминеральный реагент «АПТОН-РС», Монасил и воду (патент РФ №2356929, МПК С09К 8/04, Е21 В 33/138, опубл. 27.05.2009). Недостатком данного состава является то, что при температуре 20°С время гелеобразования составляет от 25 мин до 7 ч 25 мин в зависимости от соотношения ингредиентов, что недостаточно при проведении работ при более высоких пластовых температурах. При уменьшении концентрации регулятора гелеобразования (сульфаминовая кислота) происходит увеличение времени гелеобразования до 7 ч 25 мин при температуре 20°С, что также приводит к ухудшению технологических свойств состава, такие как, пластическая прочность, адгезия к металлу и пластовой породе. Поэтому данный состав не может обладать высокой эффективностью при проведении изоляционных работ в скважинах с повышенной пластовой температурой.

Известен способ изоляции водопритока в высокотемпературных пластах (патент РФ №2272891, МПК Е21В 33/138, опуб.27.03.2006), включающий закачку в пласт композиции из водного раствора сшивателя и полимера акриламида с молекулярной массой не более 1 млн и степенью гидролиза не более 0,5% (неионогенный полимер акриламида АК-631 марки Н-50) способного при температуре пласта более 70°С к гидролизу и образованию прочного геля в присутствии сшивателя (ацетата хрома или уротропина с гидрохиноном), а также выступающие в качестве регулятора гелеобразования слабые органические кислоты, например сульфосалициловая кислота. Недостатком данного состава является долгое время растворения низкогидролизованного неионогенного полимера АК-631 марки Р-50 в воде, как следствие, сложность и длительность приготовления состава при закачке в пласт. Кроме того, сшивка ионами металлов карбоксильных полимеров, таких как частично гидролизованный ПАА, не пригодна для применения в пластах с высокими температурными режимами. В таких пластах произойдет избыточный гидролиз полимерного геля и к тому же будет иметь место синерезис из-за нежелательной сшивки двухвалентными катионами, такими, как магний и кальций.

Наиболее близким решением, взятым за прототип, является гелеобразующий состав, который содержит сополимер акриламида и акриловой кислоты - 0,17-0,80 мас. %, параформ - 0,03-0,20 мас. %, резорцин - 0,02-0,12 мас. %, вода - остальное или сополимер акриламида и акриловой кислоты - 0,17-0,80 мас. %, параформ - 0,03-0,20 мас. %, резорцин -0,02-0,12 мас. %, аэросил - 0,01-0,03 мас. %, вода - остальное (патент РФ №2553816, МПК Е21В 33/13, С09К 8/504, Е21В 43/22, опубл. 20.06.2015.). Недостатком известного состава является то, что его применение ограничено по температурному диапазону. При температуре выше 70°С, в течение 20-30 мин. происходит резкое повышение вязкости геля, что снижает глубину закачки в пласт.

Каждое нефтяное месторождение имеет свои геолого-физические характеристики. Состав нефти и породы коллектора, вязкость нефти, минерализация пластовых вод, пластовые температуры и давление изменяются в довольно широких пределах. Так, например, пластовые температуры большинства месторождений Западной Сибири варьируются от 50 до 100°С. Поэтому применение гель-технологий для увеличения нефтеотдачи, ограничения или изоляции водопритока требует создания гелеобразующих систем с регулируемыми свойствами.

Время гелеобразования при температурах выше 70°С можно регулировать неорганическими и органическими добавками, подстраивая под конкретные пластовые условия. Поэтому важно для расширения возможности применения сшитых полимерных систем ручное регулирование времени их сшивки изменением содержания как полиакриламида, так и сшивателя. При одинаковом содержании компонентов в смеси, состав будет иметь различные свойства при 70°С и при 90°С, в т.ч. время гелеобразования, реологические свойства и прочностные характеристики.

Возможность применения структурообразующих композиций в технологиях водоизоляции в условиях повышенных пластовых температур определяется, в основном, двумя факторами:

- стабильностью структур при повышенных температурах;

- управляемой кинетикой образования структуры, позволяющей закачивать требуемые объемы композиции.

Задачей изобретения является повышение качества изоляции в высокотемпературных пластах за счет увеличения глубины закачки, прочности сшитой полимерной системы, образованной в обводненной зоне, а также расширение температурного диапазона применения тампонажного полимерного состава.

Поставленная задача решается тем, что предлагаемый тампонажный полимерный состав для высоких температур, содержащий сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, согласно изобретению, дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %:

сополимер акриламида и акриловой кислоты - 0,18-1,7

параформ - 0,03-0,2

резорцин - 0,02-0,12

реагент Кратол - 0,01-1,0

вода - остальное,

Или в качестве сшивателя содержит параформ и резорцин с аэросилом и дополнительно содержит регулятор гелеобразования - реагент Кратол, при следующем соотношении компонентов, мас. %:

сополимер акриламида и акриловой кислоты - 0,18-1,7

параформ - 0,03-0,2

резорцин - 0,02-0,12

аэросил - 0,01-0,03

реагент Кратол - 0,01-1,0

вода - остальное.

Кроме того, тампонажный полимерный состав для высоких температур в качестве сополимера акриламида и акриловой кислоты, согласно изобретению, содержит сополимер акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.

В химических технологиях добычи нефти используют широкий спектр полимеров акриламида, различающихся по молекулярным массам и степеням гидролиза. Варьирование молекулярных характеристик и концентрации полимера в композиции позволяет подобрать оптимальный состав применительно к конкретным геолого-физическим условиям месторождений.

Технология с использованием сшитых полимерных систем основывается на закачке в неоднородный по проницаемости и нефтенасыщенности пласт полимерных растворов, содержащих сшивающий агент. Предварительный выбор полимера для водоизоляции проводится на повышенных прочностных характеристиках композиций, какими обладают композиции на основе полимеров с молекулярной массой 3-18 млн. Величина предельного напряжения сдвига (ПНС) геля, образованного в трещиновато-поровом пласте, для таких композиций составляет более 30 Па, что позволяет сформировать экран, обеспечивающий эффективную водоизоляцию.

В прототипе в качестве полимера используются сополимеры акриламида и акриловой кислоты с молекулярной массой 5-18 млн и степенью гидролиза 5-30%, что недостаточно для формирования устойчивых сшитых гелей в условиях повышенных пластовых температур и значительно короткого времени гелеобразования при повышенных температурах, в заявляемом техническом решении предложено расширить диапазон используемых полимеров на сополимеры акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.

Не менее важным фактором успешного и качественного проведения изоляционных работ, в т.ч. ликвидации зон поглощений бурового раствора при бурении скважин, является выбор оптимальной концентрации полимеров и сшивателей в воде.

В заявляемом составе предлагается расширить диапазон концентрации полимерных компонентов в воде, а именно от 0,18 до 1,7%, что безусловно позволит улучшить реологические, физико-химические и фильтрационные характеристики тампонажного полимерного состава. Кроме того, увеличение концентрации и использование низкомолекулярного полимера позволяет создавать более прочные водоизоляционные экраны, что в конечном итоге сказывается на качестве проводимых работ.

В качестве регулятора гелеобразования заявляемый тампонажный полимерный состав содержит реагент Кратол. Использование реагента Кратол в нефтедобыче для целей регулирования гелеобразования полимерных систем не известно.

В состав реагента Кратол входят сульфаминовая кислота, алкилдиетилбензиламмоний хлорид и алкилбензолсульфонат натрия. Наличие добавок позволяет реагенту Кратол в заявляемом тампонажном полимерном составе выполнять роль регулятора времени гелеобразования в высокотемпературных пластах, что в конечном счете позволяет решить задачу повышения качества изоляции за счет увеличения глубины закачки и прочности сшитой полимерной системы, образованной в обводненной зоне. Изменением концентрации реагента Кратол можно регулировать необходимое время гелеобразования для конкретных геолого-физических условий конкретного месторождения, в том числе высоких пластовых температур. Введение реагента Кратол в тампонажный полимерный состав позволяет предотвратить преждевременное стремительное гелеобразование сшитых полимерных систем, происходящее при повышенных температурах. Кроме того, реагент Кратол обладает комплексным действием: кроме регулирования гелеообразования проявляет свойства бактерицида и ингибитора коррозии, что также положительно влияет на состояние оборудования в условиях активного использования сульфаминовой кислоты.

Исследованиями установлено, что в условиях высоких температур аэросил наряду с параформом и резорцином выполняет роль сшивателя сополимера акриламида и акриловой кислоты. Так как оба заявляемых гелеобразующих состава - и без аэросила, и с аэросилом - имеют равные технические преимущества за счет упрощения приготовления гелеобразующего состава без аэросила и увеличения времени гелеобразования примерно на 10-20% в присутствии его, каждое изобретение заявляемой группы изобретений охарактеризовано заявителем совокупностью признаков с применением альтернативы «или».

В составе заявляемого технического решения используются следующие реагенты.

Сополимер акриламида и акриловой кислоты - например, частично гидролизованный полиакриламид марок А345, SD-6800, AN-132, FP-107, А523 и т.п. с молекулярной массой 3-18 млн и степенью гидролиза 5-30%. Данные марки полиакриламидов применяются для очистки природных и промышленных сточных вод, интенсификации процессов осветления, сгущения и фильтрования технологических рассолов, суспензий, флотоконцентратов и флотоотходов, для процессов увеличения нефтедобычи и бурения.

Параформ (параформальдегид) ТУ 6-09-141-03-89 - продукт полимеризации формальдегида. Это белый, рыхлый порошок с запахом формальдегида. Применяется как дезинфецирующее средство, используется при получении резорцинформальдегидных, фенолформальдегидных, карбамидоформальдегидных и других смолах, а также при производстве химикатов для бурения нефтяных скважин, добавок к нефтяным маслам, клейких смол и формованных материалов электрических компонентов.

Резорцин ГОСТ 9970-74 - мета-диоксибензол, белый или с желтоватым оттенком кристаллический порошок со слабым характерным запахом. Применяют в производстве лекарственных препаратов для лечения кожных заболеваний, в производстве взрывчатых веществ, резорцино-альдегидных смол, азокрасителей, стабилизаторов и пластификаторов высокомолекулярных соединений.

Кратол ТУ 2121-415-05800142-2014 - продукт на основе сульфаминовой кислоты, выпускаемый ПАО «Пигмент», представляет собой кристаллический порошок белого цвета, хорошо растворимый в воде, содержащий сульфаминовую кислоту (от 90%), алкилдиметилбензиламмоний хлорид (1-5%) и Алкилбензолсульфонат натрия (1-5%). Применяется в нефтедобывающей промышленности при кислотной обработке призабойной зоны пласта, используется как основной компонент сухокислотных составов.

Алкилдиметилбензиламмоний хлорид относится к классу четвертичных аммониевых соединений, является высокоэффективным дезинфицирующим средством, обладающим мощным антимикробным, бактерицидным, альгицидным, фунгицидным, вирулицидным эффектом.

Алкилбензолсульфонат натрия является в настоящее время основным поверхностно-активным веществом, входящим в составы синтетических моющих средств и комплексных реагентов, широко применяющиеся в нефтяной промышленности, в качестве ингибитора сероводородной и кислотной коррозии.

Аэросил ГОСТ 14922-77 - высоко дисперсный, высокоактивный, аморфный, пирогенный диоксид кремния (SiO2). Применяется для загущения, придания тиксотропных свойств жидкостям и активного наполнения каучуков и герметиков. Широко применяется также для придания сыпучести порошкообразным продуктам, предотвращения комкования, адсорбирует излишнюю влагу и повышает срок их хранения. Выполняет функцию стабилизатора, выступает в качестве антиседиментационной добавки многокомпонентных систем. Термостабилен и сохраняет свои свойства при температуре свыше 200°С.

Все составы готовились в следующей последовательности: в пресную воду (минерализация менее 1 г/л) при перемешивании на магнитной мешалке вводили последовательно реагент Кратол, далее после полного растворения вводили сшиватели параформ, резорцин, аэросил (в составах, содержащих аэросил), далее вводили сополимер и продолжали перемешивать до полного растворения. Определяли время растворения при комнатной температуре и время гелеобразования при высокой температуре. Параллельно проводились испытания при температуре 70°С и 90°С. При достижении значений времени релаксации (времени жизни нити) больше 120 сек полимерная система считалась достигшей необходимой степени сшивки. Далее на ротационном вискозиметре Haake Viscotesteri Q определялись вязкость и реологические характеристики сшитых гелей.

Пример конкретного выполнения

В 98,7 мл пресной воды (минерализация менее 1 г/л) приготовили раствор, содержащий 1,0 г (1,0%) полиакриламида марки А 345, 0,18 г (0,18%) реагента Кратол, 0,09 г. (0,09%) параформа, 0,03 г (0,03%) резорцина и 0,005 г (0,005%) аэросила

Определили время растворения при комнатной температуре и время гелеобразования при 90°С. Время растворения составило 90 мин. Время гелеобразования 285 мин. (см. таблица 1 строка 25). Вязкость и реологические характеристики сшитого геля, измеренные на вискозиметре Haake Viscotesteri Q представлены на фиг. 1.

Далее аналогично примеру конкретного выполнения были получены составы с различным содержанием компонентов и исследованы их время растворения, время сшивки при температурах 70°С и 90°С. Все результаты приведены в таблице 1.

Эксперименты №№1-15 были проведены с использованием в качестве сополимера акриламида и акриловой кислоты частично гидролизованного полиакриламида марки AN 132, №№16-32 - частично гидролизованный полиакриламид марки А 345, №№33-49 - частично гидролизованный полиакриламид марки А 523, №№50-54 - частично гидролизованный полиакриламид марки FP 107 Время растворения и гелеобразования при различных температурах в зависимости от различной концентрации компонентов тампонажной полимерной смеси для сополимеров А345, А523, FP107, AN132 представлено в таблице 1.

Примеры 16, 33 и 50 без содержания реагента Кратол приведены для сравнения с прототипом (патент РФ№2553816). В пресной воде (минерализация менее 1 г/л) готовится раствор, содержащий полиакриламид марки А 345, сшиватели параформ и резорцин.

Из приведенных примеров видно, что состав по прототипу (строка 55) при температуре 70°С сшивается за 30 мин, при 90°С за 13 мин, что недостаточно для безаварийной доставки состава в пласт для дальнейших ремонтно-изоляционных работ. Введение регулятора гелеобразования Кратол как без аэросила, так и в присутствии его дает возможность удлинения времени сшивки от 30 до 1200 минут в зависимости от температуры.

Выбранный диапазон концентрации частично гидролизованного полиакриламида от 0,18 до 1,7% в присутствии сшивателей дает возможность получить прочные сшитые гели №№3-14. При концентрации 0,15% ПАА гель не сшивается (№1) или он является слабосшитым (№2), что не позволяет создать прочный водоизоляционный экран. При концентрации выше 1,7% описанные ПАА (№15) плохо растворяются в воде, образуют густой тяжелопрокачиваемый раствор, который может привести к аварийным последствиям в скважине.

Плавное увеличение концентрации Кратола в полимерных композициях (№№16-32) и (№№33-49) позволяет подобрать оптимальное время сшивки геланта с сохранением реологических характеристик.

Для тампонажных полимерных составов, приготовленных по примерам таблиц 1, отмеченных знаком * проводили исследование реологических свойств.

Для оценки реологических свойств составов были записаны зависимости эффективной вязкости от скорости сдвига и рассчитано предельное напряжение сдвига.

Вязкость и реологические характеристики сшитых гелей, как в присутствии регулятора гелеобразования, так и без него, определялись на ротационном вискозиметре Haake Viscotesteri Q. Для изучаемых образцов применялся сдвиговой тест при изменении скорости сдвига в диапазоне от 0,1 до 300 с-1, при котором определяли зависимость напряжения сдвига и вязкости от скорости сдвига. При этом повышение скорости сдвига производилось ступенчато, с заданным шагом в логарифмическом масштабе.

Для определения предельного напряжения сдвига построение реологической кривой осуществлялось в режиме контролируемого напряжения сдвига (CS).

Зависимости напряжения сдвига от скорости сдвига (кривые течения) для сшитых полимерных систем аппроксимируется уравнением Гершеля-Балкли, описывающим поведение пластичной жидкости:

где τ - напряжение сдвига, Па;

К - консистентность, Па⋅с - мера консистенции жидкости;

- скорость сдвига, с-1;

n - показатель степени неньютоновского поведения жидкости - чем больше n отличается от 1, тем выше проявление неньютоновских свойств раствора;

τ0 - предельное напряжение сдвига, Па - характеризует величину внешнего воздействия, необходимого для начала течения жидкости.

В качестве параметра для оценки эффективности тампонажных составов можно использовать предельное напряжение сдвига τ0. Предельное напряжение сдвига у системы в определенной степени характеризует наличие свойств твердого тела - чтобы началась деформация необходимо приложить некоторое напряжение сдвига. Чем выше τ0, тем больше сопротивление системы при малых скоростях сдвига и тем выше ее изолирующая способность.

На Фиг. 1 представлены реологические кривые зависимости эффективной вязкости от скорости сдвига составов 16 и 25 при 90°С, на Фиг. 2 - составов 33 и 45 при 90°С.

Все композиции являются неньютоновскими жидкостями, то есть их течение не подчиняется закону Ньютона и вязкость меняется при изменении скорости сдвига (приложенной деформации).

Полученные реологические кривые (Фиг. 1 и Фиг. 2) свидетельствуют, что введение регулятора сшивки не влияет на вязкостные и прочностные характеристики сшитых полимерных составов (табл. 2)

Исследованы время гелеобразования составов в присутствии частично гидролизованного полиакриламида марки FP107 без аэросила (№51) и в присутствии аэросила 0,01; 0,02, 0,03% (№№52-54 соответственно).

Использование аэросила в концентрациях от 0,01 до 0,03% позволяет дополнительно увеличить время гелеобразования тампонажного полимерного состава примерно на 10-20%, что является преимуществом использования данного состава. Использование аэросила в концентрации выше 0,03% нецелесообразно, так как с увеличением концентрации аэросила, значительного увеличения времени сшивки не наблюдается (№№52-54).

Дополнительное введение аэросила не влияет на реологические характеристики сшитых полимерных систем, что подтверждаются полученными кривыми вязкости (Фиг. 3 и табл. 3.

Преимуществами заявляемого тампонажного полимерного состава для высоких температур являются:

- возможность регулирования времени гелеобразования в зависимости от конкретных условий пласта, глубины скважины, необходимых объемов закачки;

- при повышенных температурах сохраняются свойства сшитых полимерных систем длительное время, увеличивается прочность сшитой полимерной системы, образованной в обводненной зоне;

- увеличение глубины закачки в высокотемпературные пласты вследствие увеличения времени гелеобразования;

- предотвращение резкого образования пробок при повышенных температурах, приводящее к аварийным ситуациям.

Конечным результатом использования изобретения является повышение качества проводимых изоляционных работ в высокотемпературных пластах, расширение температурного диапазона применения тампонажного состава и расширение ассортимента полимерных тампонажных составов.

Похожие патенты RU2754527C1

название год авторы номер документа
ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ, СУХАЯ СМЕСЬ И СПОСОБЫ ЕГО ПРИГОТОВЛЕНИЯ 2014
  • Муллагалин Ильяс Захибович
  • Коптяева Екатерина Игоревна
  • Каразеев Дмитрий Владимирович
  • Исмагилов Тагир Ахметсултанович
  • Вежнин Сергей Аркадьевич
  • Стрижнев Владимир Алексеевич
  • Пресняков Александр Юрьевич
  • Нигматуллин Тимур Эдуардович
  • Ганиев Ильгиз Маратович
  • Сингизова Венера Хуппуловна
  • Калимуллина Гульнара Зинятулловна
RU2553816C1
СПОСОБ ВЫБОРА ГЕЛЕОБРАЗУЮЩИХ СОСТАВОВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ 2000
  • Кабо В.Я.
  • Манырин В.Н.
  • Манырин В.Н.
  • Румянцева Е.А.
  • Позднышев Г.Н.
  • Савельев А.Г.
RU2180039C2
Состав на основе сшитой полимерной системы для ограничения водопритока в добывающих скважинах и выравнивания профиля приемистости в нагнетательных скважинах 2022
  • Попов Семен Георгиевич
  • Филиппов Евгений Владимирович
  • Гаршина Ольга Владимировна
  • Предеин Андрей Александрович
  • Климов Никита Александрович
  • Лебедев Константин Петрович
  • Пермяков Александр Юрьевич
  • Кудряшова Дарья Анатольевна
  • Якимова Татьяна Сергеевна
  • Кондратьев Сергей Анатольевич
  • Распопов Алексей Владимирович
  • Казанцев Андрей Сергеевич
RU2792390C1
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2010
  • Волков Владимир Анатольевич
  • Беликова Валентина Георгиевна
RU2467156C2
ВЯЗКОУПРУГИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНАХ 2008
  • Гасумов Рамиз Алиджавад Оглы
  • Перейма Алла Алексеевна
  • Черкасова Виктория Евгеньевна
RU2356929C1
Способ получения товарной формы щелочных стоков производства капролактама для применения в нефтедобывающей промышленности и способ получения на ее основе состава для выравнивания профиля приемистости и ограничения водопритока 2017
  • Каразеев Дмитрий Владимирович
  • Сафаров Фарит Эрикович
  • Арсланов Ильдар Робертович
  • Вежнин Сергей Аркадьевич
  • Телин Алексей Герольдович
  • Коптяева Екатерина Игоревна
  • Ратнер Артем Аркадьевич
RU2656296C1
СПОСОБ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЁМИСТОСТИ СКВАЖИН 2015
  • Телин Алексей Герольдович
  • Телин Фёдор Алексеевич
  • Юлдашев Ильдар Рафаилович
  • Новиков Алексей Владимирович
  • Семёновых Михаил Николаевич
RU2592916C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2010
  • Ибатуллин Равиль Рустамович
  • Амерханов Марат Инкилапович
  • Береговой Антон Николаевич
  • Рахимова Шаура Газимьяновна
  • Хисамов Раис Салихович
  • Файзуллин Илфат Нагимович
  • Фархутдинов Гумар Науфалович
RU2431741C1
Способ разработки нефтяного пласта 2002
  • Ибатуллин Р.Р.
  • Слесарева В.В.
  • Кубарева Н.Н.
  • Уваров С.Г.
  • Тахаутдинов Ш.Ф.
  • Ибрагимов Н.Г.
  • Хисамов Р.С.
  • Яковлев С.А.
RU2223395C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2010
  • Амерханов Марат Инкилапович
  • Береговой Антон Николаевич
  • Рахимова Шаура Газимьяновна
  • Золотухина Валентина Семеновна
  • Файзуллин Илфат Нагимович
  • Васильев Эдуард Петрович
RU2424426C1

Иллюстрации к изобретению RU 2 754 527 C1

Реферат патента 2021 года ТАМПОНАЖНЫЙ ПОЛИМЕРНЫЙ СОСТАВ ДЛЯ ВЫСОКИХ ТЕМПЕРАТУР

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции или ограничения водопритока, для выравнивания профиля приемистости, ликвидации зон поглощений высокотемпературных скважин. Тампонажный полимерный состав для высоких температур содержит сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %: сополимер акриламида и акриловой кислоты - 0,18-1,7; параформ - 0,03-0,2; резорцин - 0,02-0,12; реагент Кратол - 0,01-1,0; вода - остальное. По второй альтернативе тампонажный состав может содержать в качестве сшивателя параформ и резорцин с аэросилом, воду и дополнительно - регулятор гелеобразования, в качестве которого применяется реагент Кратол, при следующем соотношении компонентов, мас. %: сополимер акриламида и акриловой кислоты - 0,18-1,7; параформ - 0,03-0,2; резорцин - 0,02-0,12; аэросил - 0,01-0,03; реагент Кратол - 0,01-1,0; вода - остальное. Техническим результатом является повышение качества изоляции в высокотемпературных пластах за счет увеличения глубины закачки, прочности сшитой полимерной системы, образованной в обводненной зоне, а также расширение температурного диапазона применения тампонажного полимерного состава. 1 з.п. ф-лы, 3 ил., 3 табл.

Формула изобретения RU 2 754 527 C1

1. Тампонажный полимерный состав для высоких температур, содержащий сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, отличающийся тем, что дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %:

сополимер акриламида и акриловой кислоты - 0,18-1,7

параформ - 0,03-0,2

резорцин - 0,02-0,12

реагент Кратол - 0,01-1,0

вода - остальное,

или в качестве сшивателя содержит параформ и резорцин с аэросилом и дополнительно содержит регулятор гелеобразования - реагент Кратол, при следующем соотношении компонентов, мас. %:

сополимер акриламида и акриловой кислоты - 0,18-1,7

параформ - 0,03-0,2

резорцин - 0,02-0,12

аэросил - 0,01-0,03

реагент Кратол - 0,01-1,0

вода - остальное.

2. Тампонажный полимерный состав для высоких температур по п. 1, отличающийся тем, что в качестве сополимера акриламида и акриловой кислоты содержит сополимер акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.

Документы, цитированные в отчете о поиске Патент 2021 года RU2754527C1

ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ, СУХАЯ СМЕСЬ И СПОСОБЫ ЕГО ПРИГОТОВЛЕНИЯ 2014
  • Муллагалин Ильяс Захибович
  • Коптяева Екатерина Игоревна
  • Каразеев Дмитрий Владимирович
  • Исмагилов Тагир Ахметсултанович
  • Вежнин Сергей Аркадьевич
  • Стрижнев Владимир Алексеевич
  • Пресняков Александр Юрьевич
  • Нигматуллин Тимур Эдуардович
  • Ганиев Ильгиз Маратович
  • Сингизова Венера Хуппуловна
  • Калимуллина Гульнара Зинятулловна
RU2553816C1
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2010
  • Волков Владимир Анатольевич
  • Беликова Валентина Георгиевна
RU2467156C2
СПОСОБ И КОМПОЗИЦИЯ ДЛЯ ДОБЫЧИ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ ИЗ ПОДЗЕМНОГО ПЛАСТА 2004
  • Трейбиг Дуэйн
  • Чанг Кин-Таи
RU2383560C2
US 2009221453 А1, 03.09.2009
КРАТОЛ
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
https://web.archive.org/web/20201020194212/https://krata.ru/catalog/sulfaminovaya-kislota/kratol/
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1

RU 2 754 527 C1

Авторы

Утробин Андрей Николаевич

Балакирева Ольга Владимировна

Арсланов Ильдар Робертович

Фахреева Алсу Венеровна

Сергеева Наталья Анатольевна

Даты

2021-09-03Публикация

2020-11-16Подача