Устройство скважинной телеметрии бурового комплекса Российский патент 2021 года по МПК E21B47/12 E21B7/04 

Описание патента на изобретение RU2760109C1

Область техники, к которой относится изобретение

Настоящее изобретение относится к части комплекса измерений во время бурения (LWD) или каротажа в процессе бурения (MWD), а именно к оборудованию, предназначенному для оперативного контроля проводки наклонно-направленных и горизонтальных участков скважины, навигации наклонно-направленного бурения, а также исследования геофизических параметров скважин непосредственно в процессе бурения.

Уровень техники

Известно устройство наддолотного модуля (НДМ), предложенное в патенте US6057784A, 02.05.2000. В патенте, в качестве одного из вариантов, описан НДМ, который содержит измерительные датчики, датчики ориентации и датчики технологических параметров, а также устройство телеметрии, которое передает данные, полученные с датчиков в управляющий модуль, расположенный дальше от долота вдоль бурильной колонны. В предпочтительной реализации НДМ и управляющий модуль разделены винтовым забойным двигателем (ВЗД). Управляющий модуль также содержит устройство телеметрии и соединен с LWD или MWD системой, которая обеспечивает передачу полученных данных на поверхность. Устройство телеметрии представляет из себя приемо-передающую тороидальную катушку, одетую на корпус, который, по существу, представляет из себя буровую трубу с технологическими выемками, предназначенными для размещения приемо-передающей катушки, измерительных датчиков, элементов питания и управляющей электроники. Тороидальная катушка состоит из кольцевого сердечника, выполненного из материала с высокой магнитной проницаемостью и проводника, намотанного вокруг сердечника. При работе первого устройства телеметрии в качестве передатчика, переменное электрическое напряжение, приложенное к катушке, создает в сердечнике вихревое магнитное поле, которое, в свою очередь, создает вихревое электрическое поле, силовые линии которого частично замыкаются по части бурильной колонны и тем самым вызывают протекание электрического тока вдоль бурильной колонны. При этом, часть тока протекает под катушкой второго устройства телеметрии и создает вихревое магнитное поле в сердечнике, что приводит к возникновению на катушке электрического напряжения. Таким образом обеспечивается передача данных с НДМ в управляющий модуль и обратно. В данном решении описан НДМ с возможностью автоматического выбора частоты на которой работает телеметрия, для улучшения отношения сигнал/шум. Способ кодирования и декодирования данных, используемый в телеметрии, в данном решении не рассмотрен.

Известны устройства и методы передачи цифровой информации с помощь частотной манипуляции, когда логический ноль кодируется установкой частоты передающего сигнала к первому значению F1, а логическая единица кодируется установкой частоты передающего сигнала к второму значению F2. Известен метод декодирования сигнала с частотной манипуляцией, заключающийся вычислении коэффициентов ряда Фурье, соответствующих частотам модуляции F1 и F2. Каналы 1 и 2 соответствуют вычислению синусного и косинусного коэффициента на частоте F1, а их сумма квадратов обеспечивает детектирование логического нуля, Каналы 3 и 4 соответствуют вычислению синусного и косинусного коэффициента на частоте F2, а их сумма квадратов обеспечивает детектирование логической единицы. Учитывая то, что в НДМ

1) частоты модуляции F1 и F2 могут принимать значения примерно от 1 кГц, до 1 МГц и

2) ограниченный внутренний объемом модуля, отведенным под электронику, и

3) ограниченный запас электроэнергии, доступный для питания модуля,

применение этого метода является затруднительным поскольку требует проведения большого количества вычислений за короткое время, меньшее чем период опроса АЦП, который в свою очередь, должен быть минимум в 2 раза меньше, чем периоды модулированного сигнала. Поэтому используются методы декодирования описанные, например, в патентах US4193034A, 11.03.1980 и US4571738A, 18.02.1986, в которых демодуляция осуществляется путем переноса средней частоты передачи сигнала к нулевому значению. В результате на вход логической схемы демодуляции поступает сигнал с частотой (F2-F1)/2 и разной начальной фазой в случае передачи логического ноля и логической единицы, что используется для демодуляции сигнала.

Недостатком таких устройств и методов с переносом частоты является уменьшение надежности и скорости передачи информации, поскольку время передачи бита информации обратно пропорционально частоте на которой производится обработка сигнала.

Заявленное изобретение устраняет указанные недостатки и позволяет достичь заявленный технический результат.

Раскрытие изобретения

Технической задачей, которую решает предлагаемое решение, является создание устройство скважинной телеметрии бурового комплекса с быстрой целочисленной обработкой сигнала без понижения частоты, обладающего повышенной надежностью и скоростью передачи данных, низким потреблением энергии и увеличенной максимальной длительностью работы.

Технический результат заключается в повышении надежности и скорости передачи данных, обеспечении быстрой целочисленной обработки сигнала без понижения частоты, снижении потребления энергии и увеличении максимальной длительности работы устройства.

Для решения поставленной задачи с достижением заявленного технического результата устройство скважинной телеметрии бурового комплекса содержит расположенные вдоль бурильной колонны и взаимосвязанные между собой долото, наддолотный модуль, забойный двигатель и управляющий модуль, причем наддолотный модуль содержит измерительные датчики, датчики ориентации и датчики технологических параметров, а также устройство телеметрии, которое передает данные, полученные с указанных датчиков в управляющий модуль, при этом управляющий модуль также содержит устройство телеметрии и соединен с телесистемой, обеспечивающей передачу полученных данных на поверхность, причем наддолотный модуль и управляющий модуль выполнены с возможностью передачи данных между собой посредством частотной модуляции с кодированием логических нуля и единицы частотами F1 и F2, причем частоты F1 и F2 выбраны таким образом, что периоды сигнала равные Т1=1/F1 при передаче нуля и Т2=1/F2 при передаче единицы кратны периоду опроса АЦП - Та, а длительность передачи бита информации прямо пропорциональна периодам Т1 и Т2 и обратно пропорциональна периоду опроса АЦП и наибольшему общему делителю значений Т1/Та и Т2/Та, при этом демодуляция выполнена с возможностью осуществления в режиме реального времени, посредством целочисленного алгоритма.

Демодуляция выполнена с возможностью осуществления в режиме реального времени и выполнена посредством целочисленного алгоритма приближенного вычисления коэффициентов ряда Фурье на частотах F1 и F2, вычисления и сравнения, с заданными пороговыми значениями, энергии, передаваемой на частотах F1 и F2, в принятом сигнале.

Краткое описание чертежей

Фиг. 1 - Компоновка прибора в составе комплекса каротажа в процессе бурения;

Фиг. 2 - Компоновка прибора в составе комплекса каротажа в процессе бурения;

Фиг. 3 - Продольный разрез НДМ, согласно изобретению;

Фиг. 4 - Втулки, фиксирующие датчики НДМ, с изолятором и амортизатором, сечение Г-Г;

Фиг. 5 - Боковой разъем НДМ с заглушкой, сечение Е-Е;

Фиг. 6 - Датчики НДМ, с электрической платой и батареями, сечение Д-Д;

Фиг. 7 - Продольный разрез НДМ, с изображением батарей;

Фиг. 8 - Продольный разрез НДМ, с изображением датчика измерения зенитного угла и электрической платы;

Фиг. 9 - Продольный разрез НДМ, с изображением датчика естественной гамма активности породы и электронной платы;

Фиг. 10 - Продольный разрез управляющего модуля, согласно изобретению;

Фиг. 11 - Общая диаграмма работы алгоритма демодуляции.

Осуществление изобретения

Устройство скважинной телеметрии бурового комплекса включает наддолотный модуль (НДМ) и управляющий модуль, которые эксплуатируются в составе бурильной колонны при бурении наклонно-направленных и горизонтальных скважин. НДМ содержит измерительные датчики, датчики ориентации, датчики технологических параметров и устройство телеметрии, а также управляющий модуль с устройством телеметрии и разъемом для подключения к MWD или LWD телесистеме. НДМ и управляющий модуль, по существу, представляют из себя буровую трубу с технологическими выемками, предназначенными для размещения устройства телеметрии, измерительных датчиков, элементов питания и управляющей электроники. Устройство телеметрии представляет из себя приемо-передающую тороидальную катушку, одетую на корпус, которая состоит из кольцевого сердечника, выполненного из материала с высокой магнитной проницаемостью и проводника, намотанного вокруг сердечника.

Наддолотный модуль (НДМ) является частью комплекса измерений во время бурения (LWD) или каротажа в процессе бурения (MWD), предназначенного для оперативного контроля проводки наклонно-направленных и горизонтальных участков скважины, навигации наклонно-направленного бурения, а также исследования геофизических параметров скважин непосредственно в процессе бурения и предназначен для:

- повышения оперативности и точности полученных данных о направлении бурения и о свойствах окружающих пород, за счет проведения измерений в непосредственной близости от долота;

- повышения качества бурения за счет возможности контроля технологических параметров бурения.

В предпочтительной реализации, НДМ установлен сразу за долотом, затем установлен винтовой забойный двигатель (ВЗД), после которого следует управляющий модуль, подключенный к LWD или MWD телесистеме.

Компоновка прибора в составе бурильной колонны с телесистемой LWD или MWD, показана на фигурах 1 и 2. Модуль НДМ 2 в предпочтительном варианте стыкуется к долоту 1, затем следует винтовой забойный двигатель (ВЗД) 3 и модуль управления 4. Модуль управления стыкуется либо через переходник 5 непосредственно с нижним внутренним модулем телесистемы 7, либо через переходник 5 с нижним внешним модулем телесистемы 8.

На фиг. 3 - фиг. 9 показана одна из возможных реализаций НДМ. Модуль состоит из корпуса 9, в который установлен боковой разъем 10 (фиг. 5) для считывания информации, который закрыт в процессе работы герметичной заглушкой 11, датчики измерения зенитного угла 13 (фиг. 3, 6, 8), установленные в модуле, и датчик естественной гамма активности породы 14 (фиг. 6, 9), данные с которых принимают и обрабатывают электрические платы 15 и 16 (фиг. 6, 8, 9), которые фиксируются втулками 17 (фиг. 4), устанавливаются на изолятор 18 и амортизатор 19 и прижимаются винтами 20 через прижим 21, питаются от одной или более батареей 22 (фиг. 6, 7).

Передача данных происходит с помощью устройства телеметрии, которое представляет из себя тороидальную катушку 23 вместе с электроникой управления. Тороидальная катушка состоит из тороидального сердечника 24, выполненного из материала с высоким значением магнитной проницаемости и намотанного на сердечник проводника 25. На корпус 9 установлено кольцо 26, изготовленное из подходящего диэлектрического материала, которое герметизируется уплотнительными кольцами 27. Для механической защиты и защиты от внешнего давления бурового раствора компонентов модуля, поверх корпуса 9 устанавливается кожух 28, который герметизируется при помощи уплотнительных колец 29, 30 и 31, и фиксируется от проворота втулками 32 при помощи винтов 33 и в осевом направлении гайкой 34, аналогично фиксируется от проворота втулками 35 и винтами 36.

На фиг. 10 показан продольный разрез управляющего модуля согласно изобретению. Модуль состоит из корпуса 41, в который установлены платы управления модулем и обработки данных 37 и 38, которые фиксируются втулками 17 (фиг. 4), устанавливаются на изолятор 18 и амортизатор 19 и прижимаются винтами 20 через прижим 21. Тороидальная катушка устройства телеметрии 23 и диэлектрическое кольцо 26, полностью повторяют устройство телеметрии НДМ. Кожух управляющего модуля 28 аналогичен кожуху НДМ. Подключение к телесистеме происходит через центральный контакт 39, провода 40, от которого идут к электрическим платам 37 и 38, и который фиксируется на корпусе 41.

Диэлектрические кольца 26 фиг. 3, 10 обеспечивают, топологически, наружное расположение тороидальной катушки, такое, что металлический корпус 9 или 41 вместе с кожухом 28 и проводящей средой, в которой находится модуль в процессе бурения, образуют вокруг сечения тороидальной катушки, замкнутый электрический контур.

При работе одного из устройств телеметрии в качестве передатчика, переменное электрическое напряжение, приложенное к катушке, создает в сердечнике вихревое магнитное поле, которое, в свою очередь, создает вихревое электрическое поле, силовые линии которого частично замыкаются по части бурильной колонны и тем самым вызывают протекание электрического тока вдоль бурильной колонны. При этом часть тока протекает по корпусу через катушку второго устройства телеметрии и создает вихревое магнитное поле в сердечнике, что приводит к возникновению на катушке электрического напряжения. Таким образом обеспечивается передача данных с НДМ в управляющий модуль и обратно.

Сигнал с тороидальной катушки, после аналоговой фильтрации и усиления, поступает на вход АЦП и затем подвергается цифровой обработке с использованием контроллера или программируемой логической интегральной схемы (ПЛИС).

Для надежной и быстрой передачи информации между наддолотным модулем и управляющим модулем используется частотная модуляция с кодированием логического нуля и единицы частотами F1 и F2, соответственно. Демодуляция осуществляется в режиме реального времени, без понижения частоты сигнала. Что означает что алгоритм демодуляции должен выполняться за времена порядка периода опроса АЦП - Та, который в свою очередь, следуя теореме Котельникова, должен быть минимум в два раза меньше, чем периоды передачи нуля Т1=1/F1 и единицы Т2=1/F2.

Для обеспечения высокой скорости выполнения алгоритма демодуляции он должен содержать только целочисленные операции сложения умножения и децимации. Для этого частоты F1 и F2 выбираются таким образом, чтобы периоды сигнала при передаче нуля и единицы были кратны периоду опроса АЦП. То есть отношения Т1/Та=n1 и Т2/Та=n2 должны быть целыми. Длительность передачи бита должна быть равна Tb=k⋅T1⋅Т2/(Ta⋅D), где D - наибольший общий делитель (НОД) n1 и n2, k≥1 - произвольный целый множитель.

Учитывая описанные выше условия, для скорости передачи информации получим Fb=1/Tb=Fa⋅D/(k⋅n1⋅n2), где Fa=1/Та - частота опроса АЦП. Для получения максимальной скорости передачи информации при заданной Fa, к должно быть равно 1, а n1 и n2 должны быть небольшими числами с НОД равным 1. Однако для последующей целочисленной обработки удобней использовать n1 и n2 с НОД равным 2. Например это могут быть следующие пары чисел: 6 и 8; 8 и 10; 10 и 12; и так далее. Максимальной скорости передачи информации можно достичь при использовании пар 2 и 4 или 4 и 6, однако при выборе этих значений частоты F1 и F2 отличаются в 2 и 1,5 раза, соответственно, что приводит к существенно разной амплитуде сигнала на АЦП при передаче 0 или 1. Это затрудняет декодирование сигнала и поэтому пары 2 и 4 или 4 и 6 не желательны для использования. С другой стороны, уже при выборе пары 10 и 12 скорость передачи данных в 2,5 раз меньше, чем при выборе пары 6 и 8, поэтому пары со большими значениями n1 и n2 тоже не желательны, но и при таких значениях скорость передачи информации, по сравнению с аналогами, остается высокой.

Алгоритм демодуляции заключается в вычислении коэффициентов ряда Фурье, соответствующих частотам модуляции F1 и F2. Общая диаграмма работы такого алгоритма приведена на фиг. 11. Каналы 1 и 2 соответствуют вычислению синусного и косинусного коэффициента на частоте F1, а их сумма квадратов пропорциональна энергии, передаваемой на частоте F1, и обеспечивает детектирование логического нуля. Каналы 3 и 4 соответствуют вычислению синусного и косинусного коэффициента на частоте F2, а их сумма квадратов пропорциональна энергии, передаваемой на частоте F2, и обеспечивает детектирование логической единицы. Для обеспечения быстродействия алгоритма применяется целочисленный приближенный алгоритм вычисления коэффициентов ряда Фурье и детектирования логических 0 и 1, который получается следующим образом:

1) Интегралы приближенно заменяются суммами с шагом по времени равным периоду опроса АЦП:

,

где Sj - последнее измерение сигнала на АЦП. Аналогично приближаются интегралы с косинусом и интегралы для частоты F2.

2) Функции синуса и косинуса заменяются приближенными целочисленными аналогами. В предпочтительном варианте синус и косинус заменяются меандром, следующим образом:

,

где ƒs(x) - целочисленная замена синуса. Замена для косинуса ƒc(x) получается аналогично. Функции синуса и косинуса могут быть заменены не меандром, а например путем округления к ближайшему целому:

,

где round{x) - обозначает функцию округления к ближайшему целому.

3) Для выбранных k, n1, n2, D и целочисленных fs(x) b fc(x), строятся рекуррентные формулы для вычисления сумм, основанные на том, что при измерении нового значения на АЦП Sj, значительная часть измерений Sj-i входят в новую сумму, с тем же множителем, что и в сумму, полученную при прошлом измерении, поэтому можно не вычислять новую сумму полностью, а получить новое значение из старого учитывая только измерения множитель, при которых изменился. Кроме того, при получении рекуррентных формул, используется то, что косинус и его целочисленный аналог может быть получен из синуса или целочисленного аналога сдвигом на четверть периода. Что позволяет проводить рекуррентные вычисления для одной суммы, а не отдельно для синуса и для косинуса.

Похожие патенты RU2760109C1

название год авторы номер документа
ЗАБОЙНАЯ ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА С НАДДОЛОТНЫМ МОДУЛЕМ И СПОСОБ БЕСПРОВОДНОЙ ПЕРЕДАЧИ ЕЕ ДАННЫХ НА ЗЕМНУЮ ПОВЕРХНОСТЬ 2013
  • Шайхутдинов Рамиль Анварович
  • Чупров Василий Прокопьевич
RU2549622C2
ЭЛЕКТРИЧЕСКИЙ РАЗДЕЛИТЕЛЬ-РЕТРАНСЛЯТОР СИГНАЛОВ 2014
  • Чупров Василий Прокопьевич
  • Шайхутдинов Рамиль Анварович
RU2580563C1
СИСТЕМА ДВУСТОРОННЕЙ ТЕЛЕМЕТРИИ ПО БУРИЛЬНОЙ КОЛОННЕ ДЛЯ ИЗМЕРЕНИЙ И УПРАВЛЕНИЯ БУРЕНИЕМ 2006
  • Ли Цимин
  • Кларк Брайан
  • Мехта Шиям Б.
  • Ютэн Реми
  • Рид Кристофер П.
  • Сантосо Дэвид
  • Хватум Лиз
  • Мадхаван Рагху
  • Фоллини Жан-Марк
  • Даунтон Джеффри К.
  • Элдред Уолтер Д.
RU2413841C2
СПОСОБ И ПРИБОР ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕИСПРАВНОСТИ В КАБЕЛЬНОЙ БУРИЛЬНОЙ ТРУБЕ 2007
  • Сантосо Дэвид
  • Рендусара Дуди
  • Накадзима Хироси
  • Чадха Кану
  • Мадхаван Рагху
  • Хватум Лиз
RU2436109C2
Система электрической беспроводной связи между забойной телеметрической системой и дополнительным измерительным модулем 2017
  • Жиляев Юрий Павлович
  • Жиляев Александр Юрьевич
  • Мокроносов Евгений Дмитриевич
  • Чернышев Андрей Анатольевич
RU2661971C1
ЗАБОЙНАЯ ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА 2012
  • Жиляев Юрий Павлович
  • Жиляев Александр Юрьевич
  • Яковлев Сергей Михайлович
RU2509210C1
Ретранслятор скважинной электромагнитной телеметрии 2021
  • Титоров Максим Юрьевич
  • Королев Владимир Алексеевич
  • Кульчицкий Владимир Николаевич
RU2778079C1
ЗАБОЙНАЯ ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА С ГИДРАВЛИЧЕСКИМ КАНАЛОМ СВЯЗИ 2004
  • Ширяев А.А.
  • Ефимов М.А.
  • Беляков Н.В.
  • Макушев В.И.
RU2256794C1
НАЗЕМНОЕ УСТРОЙСТВО И СПОСОБ СВЯЗИ ДЛЯ ИСПОЛЬЗОВАНИЯ В ТЕЛЕМЕТРИИ ПО БУРИЛЬНОЙ КОЛОННЕ 2006
  • Ли Цимин
  • Сантосо Дэвид
  • Шерман Марк
  • Мадхаван Рагху
  • Леблан Рэндалл П.
  • Томас Джон А.
  • Монтеро Джозеф
RU2401931C2
НАДДОЛОТНЫЙ МОДУЛЬ (ВАРИАНТЫ) 2016
  • Будаев Даниил Александрович
  • Бикинеев Арсений Арсеньевич
  • Шайхутдинов Рамиль Анварович
  • Мишин Юрий Семёнович
  • Чупров Василий Прокопьевич
RU2633884C2

Иллюстрации к изобретению RU 2 760 109 C1

Реферат патента 2021 года Устройство скважинной телеметрии бурового комплекса

Изобретение относится к части комплекса измерений во время бурения (LWD) или каротажа в процессе бурения (MWD), а именно к оборудованию, предназначенному для оперативного контроля проводки наклонно-направленных и горизонтальных участков скважины, навигации наклонно-направленного бурения, а также исследования геофизических параметров скважин непосредственно в процессе бурения. Устройство скважинной телеметрии бурового комплекса содержит расположенные вдоль бурильной колонны и взаимосвязанные между собой долото, наддолотный модуль, забойный двигатель и управляющий модуль, причем наддолотный модуль содержит измерительные датчики, датчики ориентации и датчики технологических параметров, а также устройство телеметрии, которое передает данные, полученные с указанных датчиков в управляющий модуль, при этом управляющий модуль также содержит устройство телеметрии и соединен с телесистемой, обеспечивающей передачу полученных данных на поверхность. Наддолотный модуль и управляющий модуль выполнены с возможностью передачи данных между собой посредством частотной модуляции с кодированием логических нуля и единицы частотами F1 и F2. Частоты F1 и F2 выбраны таким образом, что периоды сигнала Т1=1/F1 при передаче нуля и Т2=1/F2 при передаче единицы кратны периоду опроса аналого-цифрового преобразователя (АЦП) - Та, а длительность передачи бита информации прямо пропорциональна периодам Т1 и Т2 и обратно пропорциональна периоду опроса АЦП и наибольшему общему делителю значений Т1/Та и Т2/Та, при этом демодуляция выполнена с возможностью осуществления в режиме реального времени посредством целочисленного алгоритма. Технический результат заключается в повышении надежности и скорости передачи данных, снижении потребления энергии и увеличении максимальной длительности работы устройства. 1 з.п. ф-лы, 11 ил.

Формула изобретения RU 2 760 109 C1

1. Устройство скважинной телеметрии бурового комплекса, содержащее расположенные вдоль бурильной колонны и взаимосвязанные между собой долото, наддолотный модуль, забойный двигатель и управляющий модуль, причем наддолотный модуль содержит измерительные датчики, датчики ориентации и датчики технологических параметров, а также устройство телеметрии, которое передает данные, полученные с указанных датчиков в управляющий модуль, при этом управляющий модуль также содержит устройство телеметрии и соединен с телесистемой, обеспечивающей передачу полученных данных на поверхность, отличающееся тем, что наддолотный модуль и управляющий модуль выполнены с возможностью передачи данных между собой посредством частотной модуляции с кодированием логических нуля и единицы частотами F1 и F2, причем частоты F1 и F2 выбраны таким образом, что периоды сигнала Т1=1/F1 при передаче нуля и Т2=1/F2 при передаче единицы кратны периоду опроса АЦП - Та, а длительность передачи бита информации прямо пропорциональна периодам Т1 и Т2 и обратно пропорциональна периоду опроса АЦП и наибольшему общему делителю значений Т1/Та и Т2/Та, при этом демодуляция выполнена с возможностью осуществления в режиме реального времени, посредством целочисленного алгоритма.

2. Устройство по п. 1, отличающееся тем, что демодуляция выполнена с возможностью осуществления в режиме реального времени и выполнена посредством целочисленного алгоритма приближенного вычисления коэффициентов ряда Фурье на частотах F1 и F2, вычисления и сравнения, с заданными пороговыми значениями, энергии, передаваемой на частотах F1 и F2, в принятом сигнале.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760109C1

СКВАЖИННЫЙ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС 2009
  • Батузов Андрей Степанович
  • Мельников Андрей Вячеславович
  • Пермяков Алексей Геннадиевич
  • Ходаковский Андрей Владимирович
RU2425213C1
УСОВЕРШЕНСТВОВАННАЯ СИСТЕМА СВЯЗИ БУРИЛЬНОЙ КОЛОННЫ, КОМПОНЕНТЫ И СПОСОБЫ 2013
  • Чау Альберт В.
  • Лэм Лок Виет
RU2605105C2
US 6057784 A1, 02.05.2000
FR 2899931 A1, 19.10.2007.

RU 2 760 109 C1

Авторы

Жилин Александр Александрович

Кочергин Максим Сергеевич

Васильев Артем Юрьевич

Зимовец Сергей Валериевич

Каюмов Максим Курмангалиевич

Сухарев Павел Александрович

Левченко Михаил Юрьевич

Жилин Антон Александрович

Злодеев Валерий Викторович

Даты

2021-11-22Публикация

2020-12-30Подача