Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей (ЖРД) с электронасосной системой подачи низкокипящих (криогенных) компонентов топлива в камеру сгорания.
В настоящее время в связи с успехами в создании энергоемких аккумуляторных батарей с удельной емкостью до 350 Вт⋅час/кг и относительно легких вентильных электродвигателей на постоянных магнитах с удельной массой ≤0,2 кг/КВт сформировался новый класс ЖРД с электронасосной системой подачи топлива в камеру сгорания. В таких двигателях привод каждого насоса, подающего компонент топлива в камеру, осуществляется индивидуальным электродвигателем постоянного тока с питанием его через преобразователь от литий-ионных или литий-полимерных аккумуляторных батарей, обладающих наилучшими массовыми характеристиками.
В диапазоне тяг от 0,4 тс до ~2 тс двигатели с электронасосной системой подачи топлива могут составить конкуренцию традиционно используемым в данном диапазоне тяг двигателям с турбонасосной системой подачи топлива, выполненным по схеме без дожигания рабочего тела турбины, имея такие качества, как отсутствие потерь удельного импульса, связанных с выхлопом отработанного в турбине генераторного газа, отсутствие газогенератора и теплонапряженных высокотемпературных элементов систем подачи (турбина, газоводы, выхлопные сопла); отсутствие специальных функциональных систем: системы агрегатов, обеспечивающих раскрутку ТНА при запуске двигателя, системы агрегатов регулирования тяги и соотношения расходов компонентов топлива через двигатель - функции этих систем обеспечиваются за счет изменения скоростей вращения электронасосов и, соответственно, расходов компонентов топлива в камеру по командам системы управления РН. Указанными качествами обладает двигатель «Rutherford» с тягой -2 тс, используемый в составе I и II ступеней РН «Elecktron», разработанный дочерним предприятием частной американской компанией «Rocket Lab». Этот двигатель принят за прототип изобретения. Недостаток ЖРД, выполненного по схеме прототипа, заключается в существенном возрастании массы блока питания на основе аккумуляторных батарей даже с высокими удельными характеристиками, указанным выше, при переходе к большим тягам, превышающим верхний предел указанного выше диапазона при более высоких давлениях в камере, обеспечивающих приемлемый удельный импульс в атмосферных условиях.
Так, если при тяге двигателя 2000 кгс на уровне моря (давление окружающей среды - 1 ата) и давлении в камере 20 ата, при котором удельный импульс двигателя равен 254 с, мощность суммарного электропотребления двигателя равна ~44 КВт, а масса батарей, обеспечивающих работу двигателя в течение 140 с (I ступень РН) равна ~6 кг, то при тяге двигателя в атмосферных условиях 4000 кгс при давлении в камере 60 ата, обеспечивающим удельный импульс 287 с, мощность электропотребления двигателя, выполненного по схеме прототипа, составит уже 311 КВт, а потребная масса батарей, обеспечивающих работу двигателя в течение вышеуказанного времени, увеличится до ~36 кг, что составляет ~37% массы двигателя. При дальнейшем увеличении тяги и давления в камере доля батарей в массе двигателя будет только возрастать, что существенно ухудшает массовые характеристики двигателя с электронасосной системой подачи и делает его неконкурентноспособным по сравнению с двигателем, использующим турбонасосную систему подачи.
Изобретение направлено на улучшение массовых характеристик двигателя с электронасосной системой подачи низкокипящих компонентов топлива за счет снижения количества и массы аккумуляторных батарей в блоке питания электронасосных агрегатов. Результат обеспечивается тем, что в состав двигателя включен турбоэлектрогенератор (электрогенератор с турбинным приводом), вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива, выход из турбины сообщен с магистралью входа этого компонента топлива в форсуночную головку камеры, а клеммы электрогенератора скоммутированы кабелем через преобразователь вырабатываемого турбоэлектро генератором электрического тока, выполненный в виде зарядного устройства, и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов.
При таком исполнении двигателя с электронасосной системой подачи топлива возможны питание электроприводов насосов от двух источников: от электрогенератора и блока аккумуляторных батарей, а также подзарядка аккумуляторных батарей блока питания при падении напряжения на его выходе вследствие разряда батарей ниже напряжения подаваемого от электрогенератора, вследствие чего начальная электроемкость и мощность электропитания могут быть рассчитаны на потребную мощность электроприводов насосов за вычетом электрической мощности, поступающей от электрогенератора на клеммы блока питания в течение всего времени работы двигателя.
На рисунке представлена схема предполагаемого двигателя с электронасосной системой подачи топлива.
В состав двигателя входят регенеративно охлаждаемая камера 1, электронасосные агрегаты окислителя ЭНО и горючего ЭНГ с электроприводами 2, 3 насосов 4, 5, турбоэлектрогенератор (ТЭГ), турбина 6 которого сообщена входом с магистралью 7 на выходе тракта охлаждения камеры 1 и выходом - с магистралью 8 на входе в форсуночную головку камеры 1. Клеммы электрогенератора 9 через автоматический прерыватель 10 электрической цепи 11 и преобразователь 12 электрически соединены с соответствующими клеммами на общем электрическом выходе аккумуляторных батарей 13 блока питания (БП) - входе в преобразователь 14 постоянного электрического тока, поступающего от БП.
При работе двигателя после достижения номинальных оборотов ЭНО и ЭНГ автоматический прерыватель 10 замыкает электрическую цепь между клеммами электрогенератора 9 и клеммами общего электрического выхода аккумуляторных батарей 13 блока питания, после чего при снижении напряжения постоянного электрического тока на клеммах батарей в допустимых пределах, но ниже напряжения постоянного электрического тока, поступающего через преобразователь 12 от электрогенератора 9 (или при равенстве их), питание ЭНО, ЭНГ осуществляется от 2-х источников БП и ТЭГ.
Расчетная оценка, проведенная по отношению к ЖРД с тягой 4 тс с электронасосной системой подачи топлива «жидкий кислород + СПГ» при давлении в камере 60 кгс/см2 показывает, что турбоэлектрогенератор, турбина которого включена в магистраль газифицированного СПГ на выходе тракта охлаждения камеры, обеспечивает выработку при КПД 0,95 электрогенератора - 225 КВт электрической мощности при избыточных затратах на потребную мощность насоса горючего 76 КВт, то есть в течение всего времени работы двигателя необходимая электрическая мощность на питание ЭНО и ЭНГ с КПД 0,95 и подзарядку батарей составит величину 138 КВт (при суммарной потребной мощности привода насосов 280 КВт) вместо 311 КВт у прототипа. Соответственно требуемые энергоемкости БП при времени работы двигателя 140 с равны 19320 КВт⋅с и 43540 КВт⋅с, а массы аккумуляторных батарей, обеспечивающих такие емкости при перспективной удельной массовой характеристике ~350 Вт час/кг равны соответственно 15 кг и 35 кг, что, с учетом массы преобразователя напряжения 2 кг, обеспечивает выигрыш в массе двигателя по изобретению ~18 кг по сравнению с двигателем по прототипу.
название | год | авторы | номер документа |
---|---|---|---|
ДВИГАТЕЛЬНАЯ УСТАНОВКА С РАКЕТНЫМ ДВИГАТЕЛЕМ | 2019 |
|
RU2742516C1 |
Жидкостный ракетный двигатель | 2020 |
|
RU2757145C1 |
Жидкостный ракетный двигатель | 2019 |
|
RU2729310C1 |
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА | 2021 |
|
RU2760369C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОКРАТНОГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) | 2011 |
|
RU2447313C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2579295C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2156721C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОКРАТНОГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) | 2008 |
|
RU2364742C1 |
АГРЕГАТИРОВАННАЯ ГОРЕЛКА | 2012 |
|
RU2494312C1 |
ТУРБОНАСОСНЫЙ АГРЕГАТ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 2014 |
|
RU2545615C1 |
Изобретение относится к ракетной технике. Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных агрегатов на основе аккумуляторных батарей, при этом в состав двигателя включен турбоэлектрогенератор, вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива; выход из турбины сообщен с магистралью входа этого компонента топлива в полость форсуночной головки камеры, а клеммы электрогенератора связаны кабелем через преобразователь в виде зарядного устройства и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов. Изобретение обеспечивает улучшение массовых характеристик двигателя с электронасосной системой подачи низкокипящих компонентов топлива за счет снижения количества и массы аккумуляторных батарей в блоке питания электронасосных агрегатов. 1 ил.
Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных агрегатов на основе аккумуляторных батарей, отличающийся тем, что в состав двигателя включен турбоэлектрогенератор, вход в турбину которого сообщен с магистралью выхода из тракта охлаждения камеры газифицированного в нем низкокипящего компонента топлива; выход из турбины сообщен с магистралью входа этого компонента топлива в полость форсуночной головки камеры, а клеммы электрогенератора связаны кабелем через преобразователь в виде зарядного устройства и автоматический прерыватель электрической цепи с клеммами блока питания электроприводов насосов.
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2352804C1 |
Жидкостный ракетный двигатель | 2019 |
|
RU2729310C1 |
US 4998410 A, 12.03.1991 | |||
DE 3228162 A1, 09.02.1984 | |||
FR 3062171 A1, 27.07.2018. |
Авторы
Даты
2021-12-01—Публикация
2020-11-10—Подача