Способ измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности и структура для его осуществления Российский патент 2021 года по МПК G01N23/09 

Описание патента на изобретение RU2761053C1

Настоящее изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики структуры и характеристик поверхности среды, что важно для установления соответствия физических свойств среды ее микроструктурным характеристикам. Вероятность поглощения нейтрона при его отражении от поверхности определяет в частности плотность нейтронов в кольцевом накопителе нейтронов. Последнее принципиально важно в связи с задачами измерения естественного времени жизни нейтрона, а также определения вероятностей процессов нейтрон-антинейтрон и нейтрон-зеркальный нейтрон.

Известен способ измерения вероятности отражения нейтронов (рефлектометрический эксперимент) от среды [Ю.В. Никитенко, В.Г. Сыромятников, Рефлектометрия поляризованных нейтронов. Москва, Физматлит, 2013.]. Сущность способа заключается в том, что на среду из вакуума направляют поток нейтронов J0 (падающий поток) и регистрируют отраженный от среды поток нейтронов JR. Вероятность (коэффициент) отражения нейтронов от среды R=JR/J0 есть отношение отраженного потока JR к падающему J0. Вероятность поглощения нейтронов в среде определяют из соотношения μ = 1 - R. Величина μ в случае когда энергия нейтрона, связанная с движением в перпендикулярном к поверхности направлении, меньше потенциальной энергии взаимодействия (реальная часть потенциала взаимодействия) нейтрона с веществом (подбарьерное отражение), очень мала и для большинства веществ находится в диапазоне значений 10-6-10-1. Вероятность μ в общем случае определяется комплексным потенциалом взаимодействия нейтронов с поверхностью среды U = V - iW, где V - реальная, a W - мнимая части потенциала. Вероятность μ не может быть определена в обычном эксперименте на пропускание нейтронов через вещество, когда потенциал U определяется объемными свойствами среды. Измерение абсолютного значения малой величины μ является также практически не разрешимой задачей в рефлектометрическом эксперименте, когда используется однократное отражение нейтронов.

Известен способ измерения вероятности поглощения нейтронов при подбарьерном отражении, в котором измеряется количество ультрахолодных нейтронов (УХН) после их выдержки в ловушке в течение некоторого времени [Ф.Л. Шапиро. Нейтронные исследования. Москва, Наука, 1976.]. В этом случае нейтроны отражаются от стенок ловушки многократно. В ловушке нейтроны падают на стенки под разными углами, в результате чего измеряется усредненная по перпендикулярной (нормальной) к поверхности компоненте волнового вектора k (далее "волнового вектора") вероятность поглощения. Вероятность же поглощения в общем случае зависит именно от нормальной компоненты волнового вектора. Недостатком данного способа является невозможность определения вероятности поглощения в зависимости от нормальной компоненты волнового вектора нейтронов.

Известен способ (прототип) измерения вероятности ядерного или магнитного рассеяния нейтронов в тонком (толщиной 0.1-1 нм) слое, помещенном внутри среднего слоя трехслойной структуры [Ю.В. Никитенко. Нейтронные стоячие волны в слоистых системах: образование, детектирование и применение в нейтронной физике и для исследований наноструктур. Физика элементарных частиц и атомного ядра. 2009, Т. 40. Вып.6. 1682-1794.]. Внутри среднего слоя структуры при некоторых резонансных значениях волнового вектора амплитуда нейтронной волны возрастает многократно (сотни-тысячи раз). В итоге, возрастает регистрируемый рассеянный поток нейтронов. В результате, это позволяет проводить измерения за конечное время. В качестве крайних слоев структуры используются вещества с положительным значением реальной части потенциала взаимодействия нейтронов с веществом. В качестве среднего слоя могут использоваться вещества как с положительным (алюминий, кремний, висмут), так и отрицательным (титан, ванадий) значением реальной части потенциала.

Технической задачей является измерение в зависимости от нормальной компоненты волнового вектора нейтронов вероятности поглощения нейтронов при однократном подбарьерном отражении нейтронов от поверхности.

Техническая задача решается тем, что измерения вероятности отражения нейтронов от трехслойной структуры проводят при нескольких значениях толщины среднего и поверхностного слоев, из измеренных значений вероятности отражения нейтронов от структуры при резонансных значениях волнового вектора нейтрона определяют вероятность поглощения нейтронов при подбарьером отражении нейтронов от поверхности крайних слоев структуры. Оба крайних слоя структуры для осуществления способа выполняют из одного и того же исследуемого вещества, а средний слой структуры имеет нулевое значение реальной части потенциала взаимодействия, для чего его выполняют или из смеси веществ с различными по знаку значениями реальной части потенциала взаимодействия, или из смеси немагнитного и магнитного материалов.

Существенным отличительным признаком является измерение вероятности отражения нейтронов от трехслойной структуры при резонансных значениях волнового вектора при нескольких значениях толщины среднего и поверхностного слоев. С увеличением толщины среднего слоя резонансные значения волнового вектора уменьшаются. В результате, при увеличении толщины слоя в 10 раз относительно минимального значения 30 нм, диапазон изменения волнового вектора изменяется от его критического значения для крайних слоев до 10%. Для среднего слоя также важно использовать слабо поглощающие нейтроны элементы, такие как висмут, алюминий и кремний. Это приводит к тому, что общий коэффициент поглощения определяется в основном крайними слоями, для которых и стоит задача определения коэффициента поглощения. От толщины поверхностного слоя зависит чувствительность измерений. С увеличением толщины поверхностного слоя чувствительность возрастает.Однако, при чрезмерно большой толщине слоя (более 50 нм), диапазон измерений по волновому вектору становится очень малым по сравнению с разрешением спектрометра. Поэтому, для определения оптимальных условий измерения, необходимо проводить измерения при разных значениях толщины поверхностного слоя. При толщине поверхностного крайнего слоя порядка 30-50 нм коэффициент поглощения нейтронов в структуре составляет уже десятые доли, что позволяет его надежно измерить. В результате, становиться возможным измерение коэффициента поглощения при однократном отражении от поверхности в диапазоне 10-6-10-1.

Существенным и отличительным признаком является то, что оба крайних слоя структуры выполняют из одного и того же исследуемого вещества. В этом случае увеличивается часть вероятности поглощения в структуре, связанная с искомой вероятностью поглощения при подбарьерном отражении, и, как результат этого, возрастают точность и надежность (меньше определяемых параметров) определения вероятности поглощения при подбарьерном отражении.

Существенным и отличительным признаком является то, что в качестве вещества для среднего слоя используют вещество с нулевым значением реальной части потенциала взаимодействия. В этом случае диапазон изменения волнового вектора максимален и начинается от нулевого значения. Для выполнения слоя с нулевым значением реальной части потенциала можно поступать двумя различными способами. В первом случае средний слой выполняется из смеси элементов с положительным (алюминий, висмут, кремний) и отрицательным (титан, ванадий) значениями потенциалов. В случае смеси из двух элементов концентрации элементов C1 и С2 выбираются из соотношения C1V1+C2V2=0, где С2=1 - С1. Во втором случае используется смесь немагнитного и магнитного элементов. В этом случае концентрации элементов выбираются из соотношения C1V12 V2=C2mJ, где m - магнитный момент нейтрона, a J - намагниченность магнитного слоя (индекс второго слоя есть "2").

Физическая сущность предложения состоит в том, что в трехслойной структуре при определенных резонансных значениях волнового вектора плотность нейтронов возрастает не только в среднем слое, но и на поверхности крайних слоев структуры. В результате, с увеличением толщины поверхностного слоя при резонансных значениях волнового вектора увеличивается до нескольких десятых долей вероятность поглощения нейтронов в структуре М=βμ, где β - коэффициент увеличения вероятности поглощения, при этом, вероятность отражения R = 1 - М, наоборот, уменьшается. Это делает возможным определение коэффициента М, а уже из М и определение искомой вероятности поглощения μ при однократном подбарьерном отражении нейтрона от поверхности.

На рисунке 1 показана зависимость реальной части потенциала взаимодействия нейтронов V(Z) (ось ординат) с тремя слоями 1, 2 и 3 структуры. Стрелками показаны падающие на структуру нейтроны (n) и отраженные от структуры нейтроны (R). По оси абсцисс отложена координата Z, отсчитываемая от поверхности структуры. Слои структуры достаточно тонкие, они имеют толщину в диапазоне от 10 до 1000 нм.

На рисунке 2 приведены расчетные зависимости вероятности отражения от всей структуры R, вероятности поглощения М в первом слое структуры и вероятности поглощения μ при подбарьерном отражении от первого слоя. На оси ординат отложены R, М и μ, которые измеряются в безразмерных единицах, на оси абсцисс отложен волновой вектор k, измеряемый в обратных ангстремах.

Следующие параметры были использованы при расчете. Толщина первого слоя d1=1000 нм, толщина второго слоя d2=30 нм, толщина третьего слоя d3=20 нм. Отношение мнимой части потенциала к реальной для первого и третьего слоев равно η1 = η3 = 3×10-3. Реальная часть потенциала для первого V1 и третьего V3 слоев соответствует потенциалу меди VCu. Реальная часть среднего второго слоя равна нулю(смесь висмута и титана), мнимая часть потенциала соответствует мнимой части потенциала для смеси висмута и титана. Из рисунка 2 видно, что в диапазоне волнового вектора k = 0-0.009 Å-1 при резонансных значениях, при которых наблюдаются максимумы измеряемой вероятности поглощения М, последний на один-три порядка превышает коэффициент поглощения при подбарьерном отражении μ. При определении μ вначале, в результате подгонки при резонансных значениях волнового вектора расчетных значений М к экспериментально измеренным значениям М, уточняются значения потенциалов V1, V3, W2 и определяются значения потенциалов W1=W3. После этого коэффициент pi рассчитывается при необходимом значении волнового вектора ко из соотношений

где m - масса нейтрона, - постоянная Планка.

Вероятность поглощения в третьем (крайнем) слое μ3 в общем случае отличается от μ1, но при достаточно большой толщине третьего слоя (d3=30-50 нм) μ3 практически совпадает с pi при резонансных значениях волнового вектора. Поэтому, для увеличения части коэффициента поглощения структуры, связанной с искомым значением коэффициента поглощения при подбарьерном отражении, а значит увеличения точности определения последнего, третий (поверхностный) слой структуры выполняется из того же материала (элемента), что и первый.

Похожие патенты RU2761053C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ 2014
  • Никитенко Юрий Васильевич
RU2559351C1
СПОСОБ ИССЛЕДОВАНИЯ МАГНИТНО-НЕКОЛЛИНЕАРНОГО СОСТОЯНИЯ НАНОСЛОЯ 2010
  • Никитенко Юрий Васильевич
RU2450260C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ НАНОСЛОЯ 2010
  • Никитенко Юрий Васильевич
RU2444727C1
СЕНСОРНЫЙ ЭЛЕМЕНТ И СПОСОБ ДЕТЕКТИРОВАНИЯ ИЗМЕНЕНИЯ СОСТАВА ИССЛЕДУЕМОЙ ЖИДКОЙ ИЛИ ГАЗООБРАЗНОЙ СРЕДЫ 2016
  • Грунин Андрей Анатольевич
  • Четвертухин Артем Вячеславович
  • Федянин Андрей Анатольевич
  • Муха Илья Рэмович
RU2637364C2
Способ регистрации следовых количеств веществ в газовой среде 2018
  • Бурханов Геннадий Сергеевич
  • Дементьев Владимир Аркадьевич
  • Лаченков Сергей Анатольевич
  • Валянский Сергей Иванович
  • Кононов Михаил Анатольевич
  • Виноградов Сергей Владимирович
RU2697477C1
УСТРОЙСТВО ДЛЯ ДОСТАВКИ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ ПО ГИБКИМ НЕЙТРОНОВОДАМ 2010
  • Чувилин Дмитрий Юрьевич
  • Гелтенборт Петер
  • Арзуманов Семен Самвелович
  • Панин Юрий Михайлович
  • Морозов Василий Иванович
  • Стрепетов Александр Николаевич
  • Бондаренко Лев Николаевич
  • Несвижевский Валерий Викторович
RU2433492C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЭЛЕМЕНТОВ В ПРИПОВЕРХНОСТНОМ СЛОЕ ОБРАЗЦА 2009
  • Арзуманов Семен Самвелович
  • Бондаренко Лев Николаевич
  • Морозов Василий Иванович
  • Панин Юрий Николаевич
  • Стрепетов Александр Николаевич
  • Чернявский Сергей Михайлович
RU2411507C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ МАГНИТНОГО МОМЕНТА В НАНОСЛОЕ 2007
  • Аксенов Виктор Лазаревич
  • Никитенко Юрий Васильевич
RU2360234C1
СПОСОБ СИНТЕЗА МАТЕРИАЛА, В ЧАСТНОСТИ АЛМАЗА, ПОСРЕДСТВОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ПАРОВОЙ ФАЗЫ, А ТАКЖЕ УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ ЭТОГО СПОСОБА 2011
  • Теллес Олива, Орасио
RU2572652C2
СПОСОБ ГЕНЕРИРОВАНИЯ ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Ананян М.А.
  • Быков В.П.
  • Лускинович П.Н.
RU2159976C2

Иллюстрации к изобретению RU 2 761 053 C1

Реферат патента 2021 года Способ измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности и структура для его осуществления

Использование: для измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности. Сущность изобретения заключается в том, что осуществляют измерение вероятности отражения нейтронов от трехслойной структуры, в которой крайние слои выполняют из веществ с положительным значением реальной части потенциала взаимодействия с нейтроном, при этом измерения вероятности отражения нейтронов от структуры выполняют при нескольких значениях толщины среднего и поверхностного слоев, из измеренных значений вероятности отражения нейтронов от структуры при резонансных значениях волнового вектора нейтрона определяют вероятность поглощения нейтронов при подбарьерном отражении нейтронов от поверхности крайних слоев структуры. Технический результат: обеспечение возможности измерения в зависимости от нормальной компоненты волнового вектора нейтронов вероятности поглощения нейтронов при однократном подбарьерном отражении нейтронов от поверхности. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 761 053 C1

1. Способ измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности, включающий измерение вероятности отражения нейтронов от трехслойной структуры, в которой крайние слои выполняют из веществ с положительным значением реальной части потенциала взаимодействия с нейтроном, отличающийся тем, что измерения вероятности отражения нейтронов от структуры выполняют при нескольких значениях толщины среднего и поверхностного слоев, из измеренных значений вероятности отражения нейтронов от структуры при резонансных значениях волнового вектора нейтрона определяют вероятность поглощения нейтронов при подбарьерном отражении нейтронов от поверхности крайних слоев структуры.

2. Структура для осуществления способа по п. 1, отличающаяся тем, что оба крайних слоя структуры выполняют из одного и того же исследуемого вещества, а средний слой структуры имеет нулевое значение реальной части потенциала взаимодействия, для чего его выполняют или из смеси веществ с различными по знаку значениями реальной части потенциала взаимодействия, или из смеси немагнитного и магнитного материалов.

Документы, цитированные в отчете о поиске Патент 2021 года RU2761053C1

Ю.В.Никитенко
Нейтронные стоячие волны в слоистых системах: образование, детектирование и применение в нейтронной физике и для исследований наноструктур
Физика элементарных частиц и атомного ядра, 2009, т
Приспособление с иглой для прочистки кухонь типа "Примус" 1923
  • Копейкин И.Ф.
SU40A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Приспособление для образования капель однообразных размеров 1925
  • Д. Сакома
  • П. Аскенази
SU1682A1
Устройство для исследования потоков нейтронов 1980
  • Бабикова Ю.Ф.
  • Кадилин В.В.
  • Лакина И.Ю.
  • Самоненко Ю.А.
  • Самосадный В.Т.
  • Чаадаев В.А.
  • Шаврин П.И.
SU843572A1
СПОСОБ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ НЕЙТРОННОГО ПОТОКА 2010
  • Микеров Виталий Иванович
RU2447520C1
УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО ИЗМЕРЕНИЯ ПЛОТНОСТИ 2014
  • Микеров Виталий Иванович
RU2578048C1
WO 2013077941 A2, 30.05.2013
US

RU 2 761 053 C1

Авторы

Никитенко Юрий Васильевич

Даты

2021-12-02Публикация

2021-03-11Подача