ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ВЫСОКОТЕМПЕРАТУРНЫЙ ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ Российский патент 2022 года по МПК G01F1/32 

Описание патента на изобретение RU2766105C2

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности - к датчикам изгибающего момента, используемых и предназначенных для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания.

Известен Асимметричный датчик изгибающего момента для высокотемпературных вихревых расходомеров (RU 2 688 876, МПК H01L41/08, опуб. 15.08.2016), имеющий наружную пластину, один конец которой прикреплен к торцу цилиндрического корпуса, другой конец свободен, а толщина пластины линейно уменьшается от закрепленного конца к свободному с углом между плоскостями, равным 2…4°, воспринимающую переменный изгибающий момент силы давления со стороны вихрей и вызывающую переменные деформации корпуса, и один или несколько пьезоэлектрических элементов, находящихся в полости корпуса и преобразующих изгибающий момент в переменный электрический сигнал, частота которого равна частоте появления вихрей, отличающийся тем, что, с целью расширения температурного диапазона за счет использования высокотемпературных пьезоматериалов, характеризующихся малыми значениями пьезомодуля d31, но приемлемыми значениями пьезомодуля d33, геометрия преобразователя изменяется так, чтобы его чувствительный элемент имел вид набора соосных пьезоэлектрических дисков, поляризованных по толщине и установленных в цилиндрической полости, ось которой смещена относительно плоскости наружной пластины, благодаря чему изгибные деформации этой пластины, передающиеся через мембрану, вызывают напряжения сжатия-растяжения вдоль оси пьезоэлектрических дисков, преобразующиеся в электрический сигнал, пропорциональный пьезомодулю d33, выводимый посредством кабеля к приборам, фиксирующим его частоту.

Такое техническое решение имеет недостатки. Основной недостаток заключается в невысокой чувствительности датчика, что обусловлено нарушением симметрии конструкции. В результате такого нарушения симметрии, изгибающий момент силы давления со стороны вихрей и вызывающий переменные деформации корпуса, будет воздействовать на набор пьезоэлектрических дисков, преимущественно вызывая напряжения сжатия при отклонении наружной пластину в одну из сторон и изгибании мембраны, тогда как при отклонении наружной пластины в другую сторону напряжения растяжения на набор дисков оказываться не будет. В этом случае лишь будет ослабевать напряжение сжатия. Таким образом, эффективность работы такой конструкции оказывается, по крайней мере, вдвое ниже в сравнении с симметричным конструктивным решением.

Известен также датчик изгибающего момента для вихревых расходомеров (Piezo Sensor for Vortex Flowmeter, «Tms Electronic Co. Ltd», Anhui, China.), содержащий полый цилиндрический металлический корпус, оканчивающийся с одной стороны клиновидным крылом, а с другой стороны герметичным вводом с коаксиальным кабелем, имеющим экранный и центральный проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса.

Такое техническое решение также не лишено недостатков. Основной недостаток заключается в невысокой чувствительности датчика, приведенной в описании технических характеристик (https://tmselec.en.ec21.com/Piezo_Sensor_for_Vortex_Flowmeter--4083813_4083855.html). Другой недостаток - это низкая собственная резонансная частота механических колебаний корпуса датчика, обусловленная его геометрией (длинной консольной части корпуса, выходящей в измеряемый поток).

Наиболее близким к заявляемому техническому решению является датчик вихревого расходомера датчик изгибающего момента для высокотемпературных вихревых расходомеров (RU 2608331, МПК G01F1/32, опуб. 17.01.2017), содержащий наружную пластину, прикрепленную к торцу цилиндрического корпуса, воспринимающую переменный изгибающий момент силы давления со стороны вихрей и вызывающую переменные деформации корпуса, и пьезоэлектрический элемент в виде полого цилиндра из пьезоэлектрической керамики, поляризованной в радиальном направлении, установленный в полости корпуса и жестко связанный с ним, причем наружная цилиндрическая поверхность пьезоэлемента покрыта сплошным электродом, а на внутренней поверхности электрод разрезан на две части вдоль образующей по плоскости, совпадающей с плоскостью наружной пластины, благодаря чему между внутренними электродами возникает переменный электрический сигнал с частотой вихреобразования, пропорциональной скорости потока, снимаемый посредством кабеля, сигнальные проводники которого соединены с внутренними электродами пьезоэлемента, во внутреннюю полость пьезоэлемента введены контактные элементы в виде двух цилиндрически изогнутых металлических пластинок, предварительно сваренных с проводниками кабеля, отделенных друг от друга пластинкой изолятора, прижимаемых к внутренним электродам пьезоэлемента силами упругости, обеспечивающими электрический контакт электродов пьезоэлемента с линией связи.

Данное техническое решение также имеет недостатки. Одним из недостатков является не достаточно высокая чувствительность датчика, что, очевидно, связано с использованием полого цилиндра из пьезоэлектрической керамики, имеющего более устойчивую геометрию в отношении осевого изгиба в сравнении, например, с прямоугольными элементами.

Другим недостатком является то, что изгибающий момент силы давления со стороны вихрей Кармана, образовывающихся за телом обтекания в потоке среды, воспринимаемый наружной пластиной, прикрепленной к корпусу, приходится на срединную область цилиндрического корпуса, во внутренней полости которого расположен пьезоэлектрический элемент в виде полого цилиндра из пьезоэлектрической керамики. При этом собственная резонансная частота механических колебаний определяется и ограничивается сверху суммарной длиной наружной пластины и части корпуса от плоскости его фиксации до свободного конца наружной пластины. Это, в свою очередь, является причиной ограничения верхнего предела динамического диапазона измеряемых расходов (https://www.piezoelectric.ru/Products/FlowSensors/SensorsBendingMoment.php).

Техническая проблема заключается в разработке датчика изгибающего момента для вихревых расходомеров, способного работать при высоких температурах и давлениях измеряемой среды протекающих потоков жидкости и газа и имеющего высокую чувствительность и повышенную собственную резонансную частоту механических колебаний корпуса, что расширит динамический диапазон измеряемых расходов. Диапазон измеряемых частот колебаний клиновидного крыла датчика, обусловленных воздействием вихрей движущейся среды, лежит на участке частот от единиц, или десятков герц до 2-3 килогерц. Амплитуды этих колебаний существенно меньше амплитуды колебаний корпуса на собственных резонансных частотах. Поэтому перекрытие диапазона измеряемых частот и частоты собственного резонанса приводят сбою в работе расходомера и, соответственно, к ограничению динамического диапазона измеряемых расходов. По этой причине желательно, чтобы собственная резонансная частота колебаний корпуса датчика была бы значительно выше максимальных измеряемых частот.

Технический результат заключается в повышении уровня чувствительности и собственной резонансной частоты механических колебаний корпуса датчика за счет изменения конструкции корпуса в отношении сокращения длины его колеблющейся части и узла фиксации пьезоэлектрических пластин для более эффективной трансформации изгибных деформаций мембраны в изгибные деформации пьезоэлектрических пластин.

Технический результат заявляемого решения достигается тем, что в датчике изгибающего момента для вихревых расходомеров жидкости или газа, содержащем полый цилиндрический металлический корпус, оканчивающийся с одной стороны донышком, соединенным с клиновидным крылом, а с другой стороны герметичным вводом с двумя коаксиальными кабелями, имеющими экранные и центральные проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса, и представляющим собой пару прямоугольных пьезоэлектрических пластин с параллельно расположенными плоскостями, поляризованных по толщине, имеющих металлизированные по плоскостям поверхности и закрепленных с корпусом по двум своим узким сторонам, согласно изобретению донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка и превосходит ее толщину, по крайней мере, в 10 раз, соединенное с внешней поверхностью донышка клиновидное крыло у своего утолщенного основания в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко в своем центре соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин.

Технический результат заявляемого решения по п.2 достигается тем, что фиксатор пьезоэлектрических пластин представляет собой соосный с корпусом цилиндрический выступ, имеющий две лыски, параллельные плоскости симметрии, делящей пополам клин клиновидного крыла;

Технический результат заявляемого решения по п.3 достигается тем, что фиксатор пьезоэлектрических пластин представляет собой полый тонкостенный цилиндр, расположенный соосно с корпусом датчика.

Пьезоэлектрические пластины могут быть скреплены с корпусом по двум своим узким сторонам с помощью высокотемпературного клеящего вещества.

Изобретение поясняется чертежами, где:

- на фиг.1 показана общая конструкция заявляемого изобретения; датчик установлен в измерительной трубе, виды сбоку и сверху;

- на фиг.2 показана конструкция датчика, установленного в измерительную трубу; вид, при котором ось трубы нормальна поверхности рисунка;

- на фиг.3 показаны варианты конструкции фиксатора пьезоэлектрических пластин;

- на фиг.4 представлено изображение датчика в трех положениях, при которых под воздействием давления вихрей клиновидное крыло изгибается влево и вправо, либо остается в нейтральном положении.

На чертежах (фиг.1 - фиг.4) позициями обозначено:

1 - металлический корпус,

2 - донышко,

3 - клиновидное крыло,

4 - измерительная труба,

5 - герметичный ввод,

6 - коаксиальный кабель,

7 - экранный проводник,

8 - центральный проводник,

9 - пьезоэлектрический узел,

10 - пьезоэлектрические пластины,

11 - высокотемпературное клеящее вещество,

12 - цилиндрическая шейка,

13 - фиксатор пьезоэлектрического узла,

14 - тело обтекания,

15 - цилиндрический выступ с внутренней стороны донышка;

16 - лыски на цилиндрическом выступе;

17 - полый тонкостенный цилиндр.

Датчик изгибающего момента для вихревых расходомеров жидкости или газа, содержащий полый цилиндрический металлический корпус 1, оканчивающийся с одной стороны донышком 2, соединенным с клиновидным крылом 3, выходящим в измерительную трубу 4, а с другой стороны герметичным вводом 5 с двумя коаксиальными кабелями 6, имеющими экранные 7 и центральные 8 проводники, соединенные с пьезоэлектрическим узлом 9, расположенным внутри корпуса 1, и представляющим собой пару прямоугольных пьезоэлектрических пластин 10 с параллельно расположенными плоскостями, поляризованных по толщине, имеющих металлизированные по плоскостям поверхности и закрепленных с корпусом по двум своим узким сторонам высокотемпературным клеящим веществом 11, донышко 2 представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка 2 и превосходит ее толщину, по крайней мере, в десять раз, соединенное с внешней поверхностью донышка 2 клиновидное крыло 3 у своего утолщенного основания в месте соединения с донышком 2 имеет цилиндрическую шейку 12, диаметр которой не превышает одной третьей внутреннего диаметра донышка 2, с внутренней стороны донышко 2 в своем центре соединено с фиксатором 13 пьезоэлектрического узла 9, имеющим поперечный размер, не превышающий одной третьей внутреннего диаметра донышка 2 и высоту, не превышающую одной пятой длинной стороны пьезоэлектрических пластин 10. В измерительной трубе 4 перед клиновидным крылом 3 датчика в движущемся потоке измеряемых жидкости или газа, расположено тело обтекания 14, являющееся источником вихревых образований (вихрей Кармана), создающих попеременное (с каждой плоскости крыла 3) давление на крыло 3 датчика с частотой, пропорциональной скорости движения потока жидкости или газа.

В решении по п.2. фиксатор 13 пьезоэлектрических пластин 8 представляет собой соосный с корпусом цилиндрический выступ 15, имеющий две лыски 16, параллельные плоскости симметрии, делящей пополам клин клиновидного крыла 3.

В решении по п.3 формулы фиксатор 13 пьезоэлектрических пластин 8 представляет собой полый тонкостенный цилиндр 17, расположенный соосно с корпусом 1 датчика.

Устройство работает следующим образом.

Датчик устанавливается в измерительной трубе 4 за телом обтекания 14 по ходу жидкостного или газового потока так, что плоскость симметрии, делящая пополам клин клиновидного крыла 3, оказывается параллельной оси измерительной трубы 4. Периодическая последовательность вихрей (см. фиг.1), возникающих в измерительной трубе 4 за телом обтекания 14, вызывает поочередно давление на каждую из плоскостей клиновидного крыла 3 датчика изгибающего момента (см. фиг.4) с частотой, равной обратному значению периода колебаний крыла и пропорциональной скорости движения измеряемого жидкостного или газового потока. Колебания крыла 3 вызывают изгибные деформации мембраны, являющейся частью донышка 2 датчика и посредством фиксатора пьезоэлектрического узла 13 (см. фиг.2 - 4) передаются пьезоэлектрическим пластинам 10, вызывая их изгибные деформации. Изгибные деформации пьезопластин 10, вследствие пьезоэффекта, индуцируют появление электрических зарядов на металлизированных поверхностях пьезопластин 10, металлизированные поверхности каждой из которых электрически соединены с экранным 7 и сигнальным 8 проводниками коаксиальных кабелей 6.

Электрическое напряжение, снимаемое с выхода датчика, определяется отношением индуцированного заряда к суммарной емкости пьезоэлектрического чувствительного узла 9 и выводного кабеля 6.

Пример конкретного исполнения датчика изгибающего момента.

Корпус датчика, изготовленный из титана, имеет клиновидное крыло длиной 25 мм. Полый цилиндрический канал корпуса датчика имеет диаметр 5 мм и глубину 14мм, равную длине пьезокерамических пластин. Ширина пьезокерамических пластин равна 4мм. Диаметр цилиндрической шейки клиновидного крыла выбран равным диаметру полого тонкостенного цилиндра (фиксатора пьезоэлектрического узла) и равным 4 мм. Внутренний диаметр донышка равен 12 мм, а его толщина 1мм. Высота фиксатора пьезоэлектрического узла выбрана равной 2.5 мм. На фиг. 3. приведены варианты (соответствующие п.п. 2 и 3 формулы) исполнения фиксатора пьезоэлектрических пластин. Левая часть рисунка показывает вариант фиксатора пьезоэлектрических пластин в виде соосного с корпусом цилиндрического выступа, имеющего две лыски, параллельные плоскости симметрии, делящей пополам клин клиновидного крыла. На правой части рисунка показан вариант фиксатора пьезоэлектрических пластин в виде полого тонкостенного цилиндра, расположенного соосно с корпусом датчика.

Фиксация пьезопластин в корпусе датчика осуществляется высокотемпературным клеящим веществом.

Присоединение экранного и центрального проводников коаксиальных кабелей к металлизированным поверхностям пьезопластин может быть реализовано, например, с помощью точечной микросварки; в данном примере это присоединение осуществляется высокотемпературным припоем.

Эффективность работы датчика изгибающего момента во многом определяется, наряду со свойствами пьезокериммических элементов, его геометрическими характеристиками, а также упругими свойствами применяемых материалов. В частности, использование осесимметричной дисковой мембраны для трансформации изгибных колебаний клиновидного крыла в изгибные колебания пьезоэлектрических пластин, позволяет увеличить чувствительность датчика в сравнении с конструкцией, используются изгибные колебания цилиндрического корпуса датчика. Толщина мембраны, для данного технического решения не превосходящая 1/10 ее диаметра, выбрана исходя из экспериментальных данных по оптимизации геометрических характеристик корпуса датчика. Оптимизация проводилась по коэффициенту преобразования механических напряжений в электрические, при сохранении прочностных характеристик донышка. Цилиндрическая шейка клиновидного крыла, соединенная с донышком с внешней стороны, а также фиксатор пьезоэлектрического узла, соединенный с донышком с внутренней стороны, имеют близкие поперечные размеры, не превышающие 1/3 внутреннего диаметра донышка. Данный параметр также выявлен экспериментальным путем и определяет соотношение размеров между нагруженным участком мембраны, соединяющим механически шейку клиновидного крыла, мембрану, фиксатор пьезоэлектрического узла и свободным участком мембраны, подвергающемся изгибным колебаниям. При таком соотношении размеров нагруженный участок обеспечивает надежную фиксацию пьезоэлектрического узла и, в то же время, свободный участок обеспечивает амплитуду колебаний мембраны, близкую к максимальной. Высота фиксатора пьезоэлектрического узла выбрана не превышающей 1/5 длинной стороны пьезоэлектрической пластины. Это значение, как показывают эксперименты, оказывается достаточным для жесткой фиксации концов пьезоэлектрических пластин с мембраной и с клиновидным крылом и, в то же время, центральная часть пьезоэлектрической пластины, свободная от внешней механической нагрузки имеет достаточную площадь для трансформации в электрический сигнал изгибающего момента, передаваемого от изгибающейся мембраны при отклонении от срединного положения клиновидного крыла под воздействием давления со стороны вихрей движущегося измеряемого потока.

Рисунки на фиг.4. поясняют принцип передачи упругих деформаций к пьезоэлектрическим пластинам через мембрану от клиновидного крыла, колеблющегося под воздействием попеременных давлений со стороны вихрей потока на одну и другую его плоскости.

В таблице 1 приведено сопоставление экспериментальных характеристик заявляемого устройства и опубликованных данных по характеристикам прототипа и одного из аналогов.

С целью наибольшей корректности сопоставлений для эксперимента были изготовлены образцы заявляемого устройства с длиной клиновидного крыла и типом используемой пьезокерамики, соответствующих прототипу. Рабочая температура сопоставляемых образцов также выбрана идентичной 350°С.

Таблица 1.

Характе -
Ристика
Датчик
Длина клиновидного крыла, мм Тип керамики Рабочая температура, ° С Чувстви-
тель-ность, мВ/г
Чувствитель-ность, нК/Нм Резонансная
Частота, кГц
Заявляемое устройство 25 ЦТС 21 350 32 80 6.0 Протопип 108МТ (ООО «Пьезоэлектрик» Ростов-на Дону)
25

ЦТС 21

350

12

30

3.1
Аналог Piezoelectric sensor for vortex flowmeter («Tms Electronic Co. Ltd», China.)
25

-

350

0.1

0.25

2.2

Из таблицы 1 видно, что при прочих идентичных параметрах (рабочая температура, длина клиновидного крыла), характеристики заявляемого устройства выгодно отличаются от прототипа и от аналога. Чувствительность заявляемого устройства в 2.5 раза выше в сравнении с прототипом и более, чем в 300 раз выше в сравнении с аналогом. Собственная резонансная частота механических колебаний у заявляемого устройства в два раза превышает таковую у прототипа и в 2.7 раза превышает резонансную частоту аналога.

Похожие патенты RU2766105C2

название год авторы номер документа
ВЫСОКОТЕМПЕРАТУРНЫЙ ДАТЧИК ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ 2021
  • Петров Владимир Владимирович
  • Петров Арсений Владимирович
RU2771011C1
ВЫСОКОТЕМПЕРАТУРНЫЙ ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ 2020
  • Петров Арсений Владимирович
  • Петров Владимир Владимирович
  • Лапин Сергей Александрович
RU2737074C1
ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ВИХРЕВЫХ РАСХОДОМЕРОВ 2020
  • Петров Владимир Владимирович
  • Петров Арсений Владимирович
  • Лапин Сергей Александрович
RU2765898C2
ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ 2019
  • Вельмогин Александр Михайлович
  • Костарев Евгений Владимирович
  • Рогожин Сергей Сергеевич
  • Лапин Сергей Александрович
  • Петров Арсений Владимирович
  • Петров Владимир Владимирович
RU2709430C1
ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА СО ВСТРОЕННЫМ ДАТЧИКОМ ТЕМПЕРАТУРЫ 2023
  • Рогожин Сергей Сергеевич
RU2801437C1
Асимметричный датчик изгибающего момента для высокотемпературных вихревых расходомеров 2016
  • Богуш Михаил Валерьевич
  • Булдаков Геннадий Владимирович
  • Пикалев Эдуард Михайлович
RU2688876C2
ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ВИХРЕВЫХ РАСХОДОМЕРОВ 2015
  • Богуш Михаил Валерьевич
  • Булдаков Геннадий Владимирович
  • Пикалев Эдуард Михайлович
RU2608331C1
Преобразователь вихрей вихревого расходомера 2018
  • Богданов Владимир Дмитриевич
  • Конюхов Константин Владимирович
  • Плешанова Римма Ивановна
  • Конюхов Александр Владимирович
RU2691285C1
ДАТЧИК УЛЬТРАЗВУКОВОЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ 2019
  • Царевский Дмитрий Евгеньевич
  • Пасечный Виталий Валерьевич
  • Горьков Денис Владимирович
  • Роднин Юрий Валерьевич
  • Филиппов Геннадий Эдуардович
  • Петров Владимир Владимирович
  • Лапин Сергей Александрович
  • Петров Арсений Владимирович
RU2701180C1
Пьезоэлектрический преобразователь вихрей 2020
  • Богданов Владимир Дмитриевич
  • Плешанова Римма Ивановна
RU2737418C1

Иллюстрации к изобретению RU 2 766 105 C2

Реферат патента 2022 года ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ВЫСОКОТЕМПЕРАТУРНЫЙ ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности – к датчикам изгибающего момента, для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. Отличительная особенность данного датчика для вихревых расходомеров заключается в том, что согласно изобретению донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка и превосходит её толщину, по крайней мере, в 10 раз, клиновидное крыло в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин. Фиксатор пьезоэлектрических пластин может представлять собой соосный с корпусом цилиндрический выступ, имеющий две лыски, параллельные плоскости симметрии, делящей пополам клин клиновидного крыла; или фиксатор пьезоэлектрических пластин может представлять собой полый тонкостенный цилиндр, расположенный соосно с корпусом датчика. Технический результат - повышение уровня чувствительности и собственной резонансной частоты механических колебаний корпуса датчика за счет изменения конструкции корпуса в отношении сокращения длины его колеблющейся части и узла фиксации пьезоэлектрических пластин для более эффективной трансформации изгибных деформаций мембраны в изгибные деформации пьезоэлектрических пластин. 2 з.п. ф-лы, 4 ил., 1 табл.

Формула изобретения RU 2 766 105 C2

1. Датчик изгибающего момента для вихревых расходомеров жидкости или газа, содержащий полый цилиндрический металлический корпус, оканчивающийся с одной стороны донышком, соединенным с клиновидным крылом, а с другой стороны герметичным вводом с двумя коаксиальными кабелями, имеющими экранные и центральные проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса и представляющим собой пару прямоугольных пьезоэлектрических пластин с параллельно расположенными плоскостями, поляризованных по толщине, имеющих металлизированные по плоскостям поверхности и закрепленных с корпусом по двум своим узким сторонам высокотемпературным клеящим веществом, отличающийся тем, что донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка и превосходит её толщину, по крайней мере, в 10 раз, соединенное с внешней поверхностью донышка клиновидное крыло у своего утолщенного основания в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко в своем центре соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин.

2. Датчик изгибающего момента по п.1, отличающийся тем, что фиксатор пьезоэлектрических пластин представляет собой соосный с корпусом цилиндрический выступ, имеющий две лыски, параллельные плоскости симметрии, делящей пополам клин клиновидного крыла.

3. Датчик изгибающего момента по п.1, отличающийся тем, что фиксатор пьезоэлектрических пластин представляет собой полый тонкостенный цилиндр, расположенный соосно с корпусом датчика.

Документы, цитированные в отчете о поиске Патент 2022 года RU2766105C2

ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ВИХРЕВЫХ РАСХОДОМЕРОВ 2015
  • Богуш Михаил Валерьевич
  • Булдаков Геннадий Владимирович
  • Пикалев Эдуард Михайлович
RU2608331C1
ДАТЧИК ИЗГИБАЮЩЕГО МОМЕНТА ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ 2019
  • Вельмогин Александр Михайлович
  • Костарев Евгений Владимирович
  • Рогожин Сергей Сергеевич
  • Лапин Сергей Александрович
  • Петров Арсений Владимирович
  • Петров Владимир Владимирович
RU2709430C1
Асимметричный датчик изгибающего момента для высокотемпературных вихревых расходомеров 2016
  • Богуш Михаил Валерьевич
  • Булдаков Геннадий Владимирович
  • Пикалев Эдуард Михайлович
RU2688876C2
JP 7019918 A, 20.01.1995
CN 102183274 A, 14.09.2011.

RU 2 766 105 C2

Авторы

Петров Владимир Владимирович

Петров Арсений Владимирович

Даты

2022-02-07Публикация

2020-04-15Подача