Изобретение относится к области оптической элементной базы оптико-электронного приборостроения, а именно к голограммным оптическим элементам, применяемым в контрольно-измерительной аппаратуре, и может быть использовано для контроля формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности, как монолитных, так и составных асферических зеркал и линз.
Известен осевой синтезированный голограммный оптический элемент (по устаревшей и неиспользуемой в настоящее время терминологии «искусственная голограмма»), содержащий подложку, например, стеклянную, с плоской рабочей оптической поверхностью вращения, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих и неотражающих колец [Ларионов Н.П., Лукин А.В., Мустафин К.С. Искусственная голограмма оптической поверхности // Авт. свид. СССР №371857. Бюл. №7 от 25.02.1978 г., заявка №1489778 от 05.11.1970 г.].
Прототипом является осевой синтезированный голограммный оптический элемент, содержащий подложку, например, стеклянную, с выпуклой рабочей оптической поверхностью вращения, например, сферической, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих и неотражающих колец [Лукин А.В., Мустафин К.С., Рафиков Р.А. Устройство для контроля качества оптических поверхностей сложной формы // Авт. свид. СССР №413373. Бюл. №4 от 30.01.1974 г., заявка №1789673 от 29.05.1972 г.].
Крупногабаритные вогнутые асферические оптические поверхности с большой крутизной и градиентом асферичности, как монолитных, так и составных асферических зеркал и линз характеризуются наличием одновременно поперечной и продольной сферических аберраций нормалей к контролируемой поверхности или световых лучей, отраженных от нее, причем величины поперечных сферических аберраций нормалей или световых лучей, как правило, существенно больше величин соответствующих продольных сферических аберраций нормалей или световых лучей. При контроле формы этих оптических элементов требуется обеспечить получение конгруэнции дифрагированных световых лучей с большой негомоцентричностыо при большой угловой апертуре.
Основным недостатком аналога и прототипа является то, что в силу своих конструктивных особенностей они не могут компенсировать продольные сферические аберрации нормалей к контролируемой поверхности или световых лучей, отраженных от нее, а могут компенсировать только соответствующие поперечные сферические аберрации, что приводит к необходимости использования осевых синтезированных голограммных оптических элементов с чрезмерно большими световыми диаметрами.
В частности, для осуществления «полноразмерного» контроля процессов сборки и юстировки составного главного зеркала телескопа космической обсерватории «Миллиметрон» световым диаметром 10000 мм и уравнением вогнутой асферической рабочей поверхности у2=9600х в силу своей чрезвычайно высокой асферичности и крутизны формы потребовался бы осевой синтезированный голограммный оптический элемент с плоской рабочей поверхностью вращения световым диаметром не менее пяти метров, что при современном состоянии технологии невозможно обеспечить [Лукин А.В., Мельников А.Н., Скочилов А.Ф., Пышнов В.Н. О возможностях лазерно-голографического контроля процессов сборки и юстировки составного главного зеркала телескопа на примере космической обсерватории «Миллиметрон» // Оптический журнал. 2017. Т. 84. №12. С. 45-49.].
Подобную задачу не решит и осевой синтезированный голограммный оптический элемент с выпуклой сферической рабочей поверхностью вращения, так как в данном случае требуемый его световой диаметр будет порядка нескольких метров.
Техническим результатом изобретения является уменьшение габаритов осевого синтезированного голограммного оптического элемента, применяемого для контроля формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности, за счет использования дифракционной структуры, выполненной на конической рабочей оптической поверхности подложки, обеспечивающей компенсацию продольных сферических аберраций нормалей к контролируемой поверхности или световых лучей, отраженных от нее.
Технический результат достигается за счет того, что в осевом синтезированном голограммном оптическом элементе, содержащем подложку с рабочей оптической поверхностью вращения, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих и неотражающих колец, согласно настоящему изобретению, рабочая оптическая поверхность подложки выполнена в виде кругового конуса.
А также тем, что коэффициент контраста между отражающими и неотражающими кольцами составляет не менее 0,8.
А также тем, что неотражающие кольца представляют собой участки, обладающие свойством поглощения для рабочего спектрального диапазона.
А также тем, что неотражающие кольца представляют собой участки, обладающие свойством пропускания для рабочего спектрального диапазона.
А также тем, что неотражающие кольца представляют собой участки, обладающие свойством рассеяния для рабочего спектрального диапазона.
На фиг. 1 изображен предложенный осевой синтезированный голограммный оптический элемент в меридиональном сечении.
На фиг. 2 представлен пример использования осевого синтезированного голограммного оптического элемента для контроля формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности применительно к контролю сборки и юстировки составного главного зеркала космического телескопа «Миллиметрон».
Осевой синтезированный голограммный оптический элемент (см. фиг. 1) содержит подложку 1 с рабочей оптической поверхностью 2 вращения в виде кругового конуса, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих 3 и неотражающих 4 колец.
Материалом подложки 1 осевого синтезированного голограммного оптического элемента может быть бесцветное оптическое стекло марки К8, а для обеспечения температурной стабильности - кварцевое оптической стекло марки КУ-1 или ситалл марки СО115М [Справочник технолога-оптика / М.А. Окатов, Э.А. Антонов, А. Байгожин и др.; Под ред. М.А. Окатова. - СПб.: Политехника, 2004. - С. 30-32].
Закон чередования отражающих 3 и неотражающих 4 колец (частотная характеристика дифракционной структуры осевого синтезированного голограммного оптического элемента) в общем случае определяется расчетными значениями рабочей длины волны монохроматического источника света, параметров выбранной схемы контроля, параметров рабочей поверхности контролируемой детали и параметров подложки осевого синтезированного голограммного оптического элемента и рассчитывается по формуле (1) из [Белозеров А., Ларионов Н., Лукин А., Мельников А. Осевые синтезированные голограммные оптические элементы: история развития, применения. Часть I // Фотоника. 2014. №4 (46). С. 14.].
Отражающие кольца 3 представляют собой металлические участки, обладающие свойством отражения для рабочего спектрального диапазона. Например, это может быть алюминиевое покрытие вакуумного напыления для ультрафиолетового, видимого и ближнего инфракрасного спектральных диапазонов, золотое - для среднего и дальнего инфракрасных диапазонов.
Неотражающие кольца 4 представляют собой участки с коэффициентом контраста между отражающими и неотражающими кольцами не менее 0,8, который определен путем оценочного расчета с использованием справочных данных по отражающим свойствам металлических покрытий и по зеркальным составляющим неотражающих колец в целях получения интерференционной картины с удовлетворительной видностыо интерференционных полос при контроле формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности монолитных и составных асферических зеркал и линз.
Неотражающие кольца 4, представляющие собой участки, обладающие свойством поглощения для рабочего спектрального диапазона, могут быть реализованы в виде кольцевых зон из метаматериалов [Ивченко Е.Л., Поддубный А.Н. Резонансные трехмерные фотонные кристаллы // Физика твердого тела. 2006. Т. 48. Вып. 3. С. 540-547].
Неотражающие кольца 4, представляющие собой участки, обладающие свойством пропускания для рабочего спектрального диапазона, могут быть получены путем, например, химического или ионно-плазменного вытравливания металлического отражающего покрытия в соответствующих кольцевых зонах голограммного оптического элемента [Справочник технолога-оптика / М.А. Окатов, Э.А. Антонов, А. Байгожин и др.; Под ред. М.А. Окатова. - СПб.: Политехника, 2004. - С. 460-465].
Неотражающие кольца 4, представляющие собой участки, обладающие свойством рассеяния для рабочего спектрального диапазона, могут быть изготовлены путем локального нарушения с помощью специального алмазного резца или сфокусированного лазерного луча исходных отражающих свойств металлического отражающего покрытия в соответствующих кольцевых зонах рассчитанной дифракционной структуры голограммы (так называемые голограммы с «несущей» пространственной частотой нанесения колец [Белозеров А., Ларионов Н., Лукин А., Мельников А. Осевые синтезированные голограммные оптические элементы: история развития, применения. Часть I // Фотоника. 2014. №4 (46). С. 15-16]).
Изготовление дифракционной структуры предложенного осевого синтезированного голограммного оптического элемента, содержащего подложку 1 с рабочей оптической поверхностью 2 вращения в виде кругового конуса, возможно при помощи современных прецизионных токарных станков с числовым программным управлением методом «резца», либо лазерных установок методом «прямой записи» с дальнейшей химической или ионно-плазменной обработкой формируемой структуры.
Пример конкретного использования.
Использование предложенного голограммного оптического элемента открывает возможность выполнять контроль формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности, как монолитных, так и составных асферических зеркал и линз не только в процессе их изготовления (в случае составных оптических элементов - в процессе сборки) и аттестации, но и в условиях эксплуатации в космосе в целях осуществления периодического контроля формы (мониторинга возможной разъюстировки), в частности, составных зеркал космических телескопов, поскольку осевой синтезированный голограммный оптический элемент имеет относительно малые размеры и массу, как и вся контрольная голографическая система в целом при малом энергопотреблении.
Обратимся к фиг. 2, на которой изображен осевой синтезированный голограммный оптический элемент для контроля формы крупногабаритной вогнутой асферической рабочей поверхности с большой крутизной и градиентом асферичности составного главного зеркала космического телескопа «Миллиметрон».
Как видно из фиг. 2, при лазерно-голографическом контроле формы крупногабаритной вогнутой асферической оптической поверхности реализуется схема контроля «из точки в другую точку» в целях исключения искажений при получении интерферограммы контролируемой поверхности [Лукин А.В., Мельников А.Н., Скочилов А.Ф., Пышнов В.Н. О возможностях лазерно-голографического контроля процессов сборки и юстировки составного главного зеркала телескопа на примере космической обсерватории «Миллиметрон» // Оптический журнал. 2017. Т. 84. №12. С. 45-49.].
Из точечного монохроматического источника 5 световой поток падает на осевой синтезированный голограммный оптический элемент 6, содержащий подложку 1 с рабочей оптической поверхностью 2 вращения в виде кругового конуса, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих 3 и неотражающих 4 колец.
На дифракционной структуре осевого синтезированного голограммного оптического элемента 6 световой поток преобразуется в асферический геометрический фронт, после чего падает на вогнутую асферическую рабочую оптическую поверхность 7 контролируемого составного главного зеркала, которое состоит из центральной кольцевой зоны с круговым центральным отверстием и трех кольцевых ярусов, при этом панели, образующие центральную зону П1 и три яруса П2 - П4, имеют соответствующие размеры и зональную форму внеосевого вогнутого параболоида.
После отражения от вогнутой асферической рабочей оптической поверхности 7 контролируемого составного главного зеркала образуется изображение 8 точечного монохроматического источника.
Компенсация продольной сферической аберрации световых лучей, отраженных от контролируемой поверхности 7, происходит за счет использования дифракционной структуры с соответствующим расчетным законом чередования отражающих 3 и неотражающих 4 колец, выполненной на конической рабочей оптической поверхности подложки 1 осевого синтезированного голограммного оптического элемента 6.
Расчетные значения параметров вогнутой асферической рабочей оптической поверхности 7 контролируемого составного главного зеркала космического телескопа «Миллиметрон»:
- уравнение поверхности у2=9600 л:;
- световой диаметр D1=10000 мм;
- световой диаметр центрального отверстия D2=600 мм.
Расчетная рабочая длина волны λ=10,6 мкм.
В результате расчета получены следующие значения:
- параметры осевого синтезированного голограммного оптического элемента 6 с подложкой 1, имеющей рабочую оптическую поверхность 2 вращения в виде кругового конуса:
• световой диаметр основания D3=384 мм;
• угол при вершине кругового конуса γ=12,7°;
• диапазон пространственных частот ν дифракционной структуры от 120 до 190 мм-1;
• скважность - 2 (ширина отражающего кольца равна ширине неотражающего кольца);
• материал подложки - ситалл марки CO115М;
• подложка 1, имеющая рабочую оптическую поверхность 2 вращения в виде кругового конуса, выполнена полой (облегченной) для снижения ее массы;
- параметры схемы контроля:
• расстояние а1 (расстояние вдоль оптической оси от точечного монохроматического источника 5, совпадающего с вершиной вогнутой асферической рабочей поверхности 7, до вершины осевого синтезированного голограммного оптического элемента 6) равно 2947 мм;
• расстояние а2 (расстояние вдоль оптической оси от точечного монохроматического источника 5 до изображения 8 точечного монохроматического источника) равно 13000 мм.
Отражающие кольца 3 представляют собой участки голограммного оптического элемента, реализованные в виде кольцевых зон с золотым отражающим покрытием вакуумного напыления с подслоем хрома.
Примеры конкретного выполнения неотражающих колец 4:
- неотражающие кольца 4, представляющие собой участки, обладающие свойством поглощения с коэффициентом контраста между отражающими и неотражающими кольцами 0,96, реализованы в виде кольцевых зон из трехмерных фотонных кристаллов на основе гранецентрированной кубической матрицы из синтетического опала, поры в которой заполнены диоксидом ванадия [Поддубный А.Н. Теория резонансных фотонных кристаллов и квазикристаллов / Автореф. дис.… канд. физ.-мат.наук; спец. 01.04.10 - Физика полупроводников. - СПб.: Цифровой типографский центр Изд-ва Политехнического ун-та, 2010. - 19 с.];
- неотражающие кольца 4, представляющие собой участки, обладающие свойством пропускания с коэффициентом контраста между отражающими и неотражающими кольцами 0,93, получены путем ионно-плазменного вытравливания золотого отражающего покрытия;
- неотражающие кольца 4, представляющие собой участки, обладающие свойством рассеяния с коэффициентом контраста между отражающими и неотражающими кольцами 0,8, изготовлены путем локального нарушения золотого отражающего покрытия с помощью бицилиндрического алмазного резца.
Видно, что расчетные параметры осевого синтезированного голограммного оптического элемента 6 и схемы контроля являются технически реализуемыми.
Таким образом, использование предлагаемого изобретения открывает возможность обеспечения контроля формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности монолитных и составных асферических зеркал и линз, как в наземных (цеховых) условиях, так в условиях космического базирования за счет использования дифракционной структуры, выполненной на конической рабочей оптической поверхности подложки, обеспечивающей компенсацию продольных сферических аберраций нормалей к контролируемой поверхности или световых лучей, отраженных от нее, при получении конгруэнции дифрагированных световых лучей с большой негомоцентричностью при большой угловой апертуре, что позволяет уменьшить габариты осевого синтезированного голограммного оптического элемента.
название | год | авторы | номер документа |
---|---|---|---|
ГОЛОГРАФИЧЕСКОЕ УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ФОРМЫ КРУПНОГАБАРИТНЫХ ВОГНУТЫХ АСФЕРИЧЕСКИХ ОПТИЧЕСКИХ ПОВЕРХНОСТЕЙ | 2021 |
|
RU2766851C1 |
ГОЛОГРАФИЧЕСКОЕ УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ФОРМЫ АСФЕРИЧЕСКИХ ОПТИЧЕСКИХ ПОВЕРХНОСТЕЙ | 2022 |
|
RU2786688C1 |
СПОСОБ ИЗМЕРЕНИЯ ФОРМЫ ВНЕОСЕВОЙ АСФЕРИЧЕСКОЙ ОПТИЧЕСКОЙ ДЕТАЛИ | 2023 |
|
RU2803879C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЙ ДЕФЕКТОВ НА АСФЕРИЧЕСКОЙ ПОВЕРХНОСТИ ОПТИЧЕСКОЙ ДЕТАЛИ (ВАРИАНТЫ) | 2015 |
|
RU2612918C9 |
СПОСОБ ИЗМЕРЕНИЯ ДЕЦЕНТРИРОВКИ ОПТИЧЕСКОЙ ОСИ АСФЕРИЧЕСКОЙ ПОВЕРХНОСТИ | 2021 |
|
RU2758928C1 |
ИНТЕРФЕРОМЕТРИЧЕСКИЙ СПОСОБ ЮСТИРОВКИ ДВУХЗЕРКАЛЬНОГО ОБЪЕКТИВА С АСФЕРИЧЕСКИМИ ЭЛЕМЕНТАМИ | 2014 |
|
RU2561018C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМБИНИРОВАННОГО ОПТИЧЕСКОГО ЭЛЕМЕНТА | 2019 |
|
RU2722622C1 |
Интерферометр для контроля формы оптических поверхностей | 1980 |
|
SU996857A1 |
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ОБЪЕКТИВ (ВАРИАНТЫ) | 2002 |
|
RU2212695C1 |
Инфракрасный объектив с пассивной атермализацией | 2016 |
|
RU2629890C1 |
Изобретение может быть использовано для контроля формы крупногабаритных вогнутых асферических оптических поверхностей с большой крутизной и градиентом асферичности, как монолитных, так и составных асферических зеркал и линз. Осевой синтезированный голограммный оптический элемент содержит подложку с рабочей оптической поверхностью вращения, выполненную в виде кругового конуса, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих и неотражающих колец. Технический результат - уменьшение габаритов осевого синтезированного голограммного оптического элемента за счет использования дифракционной структуры, обеспечивающей компенсацию продольных сферических аберраций нормалей к контролируемой поверхности или световых лучей, отраженных от нее. 4 з.п. ф-лы, 2 ил.
1. Осевой синтезированный голограммный оптический элемент, содержащий подложку с рабочей оптической поверхностью вращения, на которую нанесена соосная кольцевая дифракционная структура, представляющая собой систему концентрических чередующихся отражающих и неотражающих колец, отличающийся тем, что рабочая оптическая поверхность подложки выполнена в виде кругового конуса.
2. Осевой синтезированный голограммный оптический элемент по п. 1, отличающийся тем, что коэффициент контраста между отражающими и неотражающими кольцами составляет не менее 0,8.
3. Осевой синтезированный голограммный оптический элемент по п. 1, отличающийся тем, что неотражающие кольца представляют собой участки, обладающие свойством поглощения для рабочего спектрального диапазона.
4. Осевой синтезированный голограммный оптический элемент по п. 1, отличающийся тем, что неотражающие кольца представляют собой участки, обладающие свойством пропускания для рабочего спектрального диапазона.
5. Осевой синтезированный голограммный оптический элемент по п. 1, отличающийся тем, что неотражающие кольца представляют собой участки, обладающие свойством рассеяния для рабочего спектрального диапазона.
1972 |
|
SU413373A1 | |
US 2017343449 A1, 30.11.2017 | |||
US 5245402 A, 14.09.1993 | |||
US 2014043474 A1, 13.02.2014. |
Авторы
Даты
2022-03-16—Публикация
2021-02-25—Подача