Изобретение относится к области газовой промышленности, а именно к регуляторам давления, и может быть использовано для понижения, регулирования и поддержания на заданном уровне давления природного газа с попутной утилизацией энергии его давления для электрогенерации.
Известен комплексный блок генерации энергии (патент РФ № 2718735, опубл. 28.01.2020), содержащий в комбинации следующие элементы: многовальный газотурбинный двигатель, содержащий турбину высокого давления, механически соединенную с воздушным компрессором, и турбину низкого давления, проточно соединенную с указанной турбиной высокого давления, но механически отделенную от нее и механически присоединенную к валу отбора мощности, который присоединен к линии валов, электрический генератор, механически присоединенный к линии валов и приводимый во вращение газотурбинным двигателем, турбомашина, механически присоединенную к линии валов и приводимую во вращение газотурбинным двигателем, устройство управления нагрузкой, предназначенное для регулирования по меньшей мере одного рабочего параметра вращательной нагрузки с обеспечением приведения условий ее работы в соответствие с требованиями процесса, в котором указанная нагрузка участвует, при этом турбина низкого давления и электрический генератор вращаются с постоянной скоростью, которая не зависит от скорости турбины высокого давления.
Недостатком известного технического решения является наличие в конструкции комплексного блока турбомашины, механически присоединенной к линии валов и приводимой во вращение газотурбинным двигателем, на вращение которой безвозвратно тратиться часть механической энергии двигателя, в результате чего снижается эффективность.
Известна система для распределения крутящего момента двигателя (патент РФ № 154667, опубл. 27.08.2015),содержащая контроллер, включающий в себя исполняемые команды для разделения имеющейся в распоряжении величины крутящего момента двигателя среди множества вспомогательных агрегатов двигателя, в том числе, генератора переменного тока и системы кондиционирования воздуха, так чтобы общая сумма имеющейся в распоряжении величины крутящего момента двигателя была выделена на множество вспомогательных агрегатов двигателя, причем имеющийся в распоряжении крутящий момент двигателя является несущей способностью по крутящему моменту двигателя на данном числе оборотов двигателя минус насосный крутящий момент двигателя, момент трения двигателя, потери крутящего момента привода на ведущие колеса и крутящий момент на колесах.
Недостатком технического решения является контроллер, включающий в себя исполняемые команды для разделения имеющейся в распоряжении величины крутящего момента двигателя среди множества вспомогательных агрегатов двигателя, но не учитывающий необходимости поддержания постоянного момента на генераторе для получения качественной электроэнергии.
Известна система регулирования турбогенераторных источников электрической энергии на основе замкнутых газотурбинных контуров (Вопросы электромеханики. Труды ВНИИЭМ. — 2001. — № 100. — С. 125-145. Труды ВНИИЭМ), содержащая регулятор напряжений, регулятор тока возбуждений, статистический преобразователь напряжений, регулятор активного тока генератора, блок балластных нагрузок, регулятор частоты вращения, турбину генератора.
Недостатком известного технического решения является подключение к турбогенераторам блока балластных нагрузок без учёта возможности изменения двигательного момента турбогенераторов в нестационарных условиях их питания.
Известно устройство регулирования давления газа с турбодетандером (патент РФ № 2723345, опубл. 10.06.2020),содержащее газораспределительное устройство, выполненное в виде соединенных с магистралью высокого давления набора труб разного диаметра с установленными на них запорными устройствами, управляемыми через контроллер от датчика давления магистрали низкого давления, соединенного с турбодетандером, нагруженным электрическим генератором переменного тока, последовательно соединенным с регулируемым по напряжению выпрямителем, регулируемым по частоте инвертором и датчиком нагрузки внешней электросети, регулятором мощности нагревательных элементов на каждой из набора труб разного диаметра, управляющие входы которых соединены с выходами блоков сравнения температуры газа с заданными значениями соответственно, силовые входы регуляторов мощности нагревательных элементов соединены с выходами силовых ключей, входы которых через датчик нагрузки нагревательных элементов соединены с выходом электрического генератора переменного тока.
Недостатком известного технического решения является использование для регулирования давления на выходе из пункта редуцирования труб разного диаметра, что позволяет выполнять это только ступенчато с определённым шагом и ведёт к снижению точности поддержания требуемой величины давления.
Известен детандер-генераторный регулятор давления природного газа(патент РФ № 2662784, опубл. 31.07.2018), принятый за прототип, содержащий электрогенератор, исполнительное устройство и объемный пневмодвигатель, вход которого соединен с его выходом через регулирующий клапан, объемный пневмодвигатель устанавливается между предохранительным запорным клапаном и выходной запорной арматурой линии редуцирования, при этом выход датчика давления, установленного на выходе детандер-генераторного регулятора давления, соединен с входом управляющего контроллера, выход которого соединен с входом исполнительного устройства регулирующего клапана.
Недостатком известного технического решения является использование в качестве основного и единственного устройства регулирования давления на выходе из пункта редуцирования регулирующего клапана, что ставит в зависимость от его параметров и технического состояния точность и надёжность редуцирования.
Техническим результатом является повышение точности и надежности регулирования давления на выходе из пункта редуцирования в широких диапазонах расходов газа через него с попутной утилизацией энергии потока природного газа для электрогенерации.
Технический результат достигается тем, что на валу электрогенератора дополнительно установлен тахометр, выход которого подключен ко входу системы управления, блок нагрузки включён в цепь ротора, и соединен с электрогенератором и входом/выходом системы управления, инвертор подключен к автоматическому зарядному устройству, выпрямителю и ко входу системы управления, выпрямитель подключен к блоку нагрузки и ко входу/выходу системы управления, автоматическое зарядное устройство соединено с аккумуляторной батареей и со входом/выходом системы управления.
Устройство поясняется следующей фигурой:
фиг. 1 – общая схема устройства, где:
1 – датчик давления;
2 – электрогенератор;
3 – исполнительное устройство;
4 – объёмный пневмодвигатель;
5 – регулирующий клапан;
6 – трубопровод;
7 – вал;
8 – тахометр;
9 – система управления;
10 – блок нагрузки;
11 – цепь ротора;
12 – инвертор;
13 – автоматическое зарядное устройство;
14 – выпрямитель;
15 – аккумуляторная батарея.
Детандер-генераторный регулятор давления с дополнительным электрорегулированием, содержащий датчик давления 1, электрогенератор 2, исполнительное устройство 3 и объемный пневмодвигатель 4, вход которого соединен с его выходом через регулирующий клапан 5, который установлен на трубопроводе 6. Вход и выход объемного пневмодвигателя 4 соединены с магистралями высокого и низкого давления, и объединены между собой трубопроводом 6.Объемный пневмодвигатель 4 механически соединен с электрогенератором 2, между объемным пневмодвигателем 4 и электрогенератором 2 на валу 7 электрогенератора 2 установлен тахометр 8. Выход тахометра 8 подключен ко входу системы управления 9. Выход датчик давления 1 подключен ко входу системы управления 9.Электрогенератор 2 подключен к блоку нагрузки 10 и цепи ротора 11. Цепь ротора 11 соединена с инвертором 12 и блоком нагрузки 10. Инвертор 12 подключен к автоматическому зарядному устройству 13, выпрямителю 14 и ко входу системы управления 9. Выпрямитель 14 подключен к блоку нагрузки 10 и ко входу/выходу системы управления 9. Автоматическое зарядное устройство 13 соединено с аккумуляторной батареей 15 и со входом/выходом системы управления 9. Аккумуляторная батарея соединена с автоматическим зарядным устройством 13 и входом/выходом системы управления 9. Блок нагрузки 10 соединен с цепью ротора 11, электрогенератором 2 и входом/выходом системы управления 9.
Устройство работает следующим образом. С датчика давления 1 поступает сигнал на систему управления 9, где он сравнивается с заданным значением. В зависимости от знака и величины расхождения система управления 9 посылает управляющий сигнал на исполнительное устройство 3 регулирующего клапана 5. В зависимости от режима сети одновременно, вместо или в дополнение к этому системой управления 9 через блок нагрузки10 изменяется сопротивление в цепи ротора 11, соединенной с электрогенератором2, в результате изменяя скорость вращения объёмного пневмодвигателя 4, что регистрируется с помощью тахометра 8. При изменении скорости вращенияобъёмногопневмодвигателя4, изменяется и давление на выходе из пункта редуцирования, что регистрируется с помощью датчика давления 1.Инвертор 12 и выпрямитель 14, связанные через цепь ротора 11 электрогенератора 2, необходимы для управления потоками энергии: избыточно сгенерированная электроэнергия выпрямляется выпрямителем 14 и заряжает аккумуляторную батарею 15 через зарядное устройство 13, в случае же дефицита электроэнергии она инвертируется инвертором12 и подается в сеть пункта редуцирования. Накопленная электрическая энергия используется при аварийных ситуациях, а также при росте электропотребления собственными системами пункта редуцирования.
Регулирование давления на выходе из пункта редуцирования регулирующим клапаном 5 и изменением частоты вращения ротора детандера 4 осуществляется совместно для повышения точности и расширения диапазонов регулирования, а также для повышения надёжности в случаях, когда регулирующий клапан 5 неисправен.
В случае повышения давления на выходе из пункта редуцирования газа выше заданного значения, это регистрируется с помощью датчика давления 1 системой управления 9, которая посылает управляющий сигнал на исполнительное устройство 3 для закрытия регулирующего клапана 5, что понижает давление на выходе из пункта редуцирования. Одновременно, вместо или в дополнение к этому системой управления 9 через нагрузку 10увеличивается сопротивление в цепи ротора 11, что повышает сопротивление подключенной через инвертор 12 нагрузки электрогенератора 2, переключая электрическую нагрузку на питание от аккумуляторной батареи15,и замедляет скорость вращения детандера 4, тем самым также уменьшая давление газа на выходе из регулятора.
В случае понижения давления на выходе из пункта редуцирования газа ниже заданного значения, это регистрируется с помощью датчика давления 1 системой управления 9, которая посылает управляющий сигнал на исполнительное устройство3 для открытия регулирующего клапана 5, что повышает давления на выходе. Одновременно, вместо или в дополнение к этому системой управления 9через нагрузку 10уменьшаетсясопротивление в цепи ротора 11, сокращая сопротивление электрогенератора 2, заряжая аккумуляторную батарею15 через автоматическое зарядное устройство 13иувеличивая скорость вращения объемного детандера 4, повышая тем самым давление газа на выходе из регулятора.
Устройство позволяет повысить точность и надежность регулирования давления на выходе из пункта редуцирования в широких диапазонах расходов газа, через него с попутной утилизацией энергии потока природного газа для электрогенерации.
название | год | авторы | номер документа |
---|---|---|---|
ДЕТАНДЕР-ГЕНЕРАТОРНЫЙ АГРЕГАТ С СИСТЕМОЙ ЕГО РЕГУЛИРОВАНИЯ | 2016 |
|
RU2620624C1 |
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ С ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2007 |
|
RU2351842C1 |
ДЕТАНДЕР-ГЕНЕРАТОРНЫЙ РЕГУЛЯТОР ДАВЛЕНИЯ ПРИРОДНОГО ГАЗА | 2017 |
|
RU2662784C1 |
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ С ВЫРАБОТКОЙ ЭЛЕКТРОЭНЕРГИИ | 2002 |
|
RU2221192C2 |
Система оптимального распределения электроэнергии, вырабатываемой при редуцировании газа на газораспределительной станции | 2020 |
|
RU2743817C1 |
СПОСОБ НАГРЕВА ГАЗА В УСТАНОВКЕ РЕДУЦИРОВАНИЯ | 2021 |
|
RU2777418C1 |
Детандер-генераторный агрегат | 2020 |
|
RU2732275C1 |
Автономная электростанция переменной частоты вращения | 2019 |
|
RU2735280C1 |
СИСТЕМА АВТОНОМНОГО ЭЛЕКТРОСНАБЖЕНИЯ | 2013 |
|
RU2530743C1 |
СИСТЕМА ПИТАНИЯ ЭЛЕКТРОПРИВОДОВ ТРАНСПОРТНЫХ СРЕДСТВ С РАЗЛИЧНЫМИ ДВИЖИТЕЛЯМИ | 2013 |
|
RU2540888C1 |
Изобретение относится к области газовой промышленности, а именно к регуляторам давления, и может быть использовано для понижения, регулирования и поддержания на заданном уровне давления природного газа с попутной утилизацией энергии его давления для электрогенерации. Детандер-генераторный регулятор давления с дополнительным электрорегулированием содержит датчик давления, электрогенератор, исполнительное устройство и объемный пневмодвигатель, вход которого соединен с его выходом через регулирующий клапан. На валу электрогенератора дополнительно установлен тахометр, выход которого подключен ко входу системы управления. Блок нагрузки включён в цепь ротора и соединен с электрогенератором и входом/выходом системы управления. Инвертор подключен к автоматическому зарядному устройству, выпрямителю и ко входу системы управления. Выпрямитель подключен к блоку нагрузки и ко входу/выходу системы управления. Автоматическое зарядное устройство соединено с аккумуляторной батареей и с входом/выходом системы управления. Техническим результатом изобретения является повышение точности и надежности регулирования давления на выходе из пункта редуцирования в широких диапазонах расходов газа. 1 ил.
Детандер-генераторный регулятор давления с дополнительным электрорегулированием, содержащий датчик давления, электрогенератор, исполнительное устройство и объемный пневмодвигатель, вход которого соединен с его выходом через регулирующий клапан, отличающийся тем, что на валу электрогенератора дополнительно установлен тахометр, выход которого подключен ко входу системы управления, блок нагрузки включён в цепь ротора и соединен с электрогенератором и входом/выходом системы управления, инвертор подключен к автоматическому зарядному устройству, выпрямителю и ко входу системы управления, выпрямитель подключен к блоку нагрузки и ко входу/выходу системы управления, автоматическое зарядное устройство соединено с аккумуляторной батареей и с входом/выходом системы управления.
ДЕТАНДЕР-ГЕНЕРАТОРНЫЙ РЕГУЛЯТОР ДАВЛЕНИЯ ПРИРОДНОГО ГАЗА | 2017 |
|
RU2662784C1 |
Газораспределительная станция | 1983 |
|
SU1183792A2 |
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ С ВЫРАБОТКОЙ ЭЛЕКТРОЭНЕРГИИ | 2002 |
|
RU2221192C2 |
Способ повышения добычи нефти | 1947 |
|
SU72016A1 |
US 5685154 A1, 11.11.1997. |
Авторы
Даты
2022-03-22—Публикация
2021-06-30—Подача