Изобретение относится к области авиации, в частности к профилю лопасти несущего винта летательного аппарата, а более конкретно к профилю концевой части лопасти. Аэродинамический профиль НЦВ-3 несущего элемента летательного аппарата содержит контуры верхней и нижней поверхности. Толщина профиля определяется в процентах отношением максимальной толщины профиля к хорде и составляет от 8 до 15%.
При проектировании лопасти несущего винта современного вертолета необходимо обеспечить компромиссное решение при выборе частоты вращения винта: с одной стороны - уменьшение числа Маха конца наступающей лопасти позволяет ослабить проявление эффектов сжимаемости воздуха; с другой стороны - увеличение окружной скорости конца лопасти приводит к уменьшению зоны срыва и обратного обтекания на диске несущего винта.
Основным источником срыва воздушного потока в концевой части лопастей несущего винта вертолета является отрыв пограничного слоя потока, обтекающего профиль лопасти. В пограничном слое, как ламинарном, так и турбулентном, образуются интенсивные вихревые потоки, вследствие чего происходит увеличение толщины и последующий отрыв пограничного слоя. Сходя с поверхности лопасти, эти вихри образуют вихревой след. Вихри, срывающиеся с лопастей, периодически ударяют по конструкции вертолета, что вызывает тряску вертолета и вибрацию отдельных его частей.
Известен аэродинамический профиль поперечного сечения несущей поверхности (патент RU 2558539, В64С 27/467, публ. 10.08.2014 г.), который имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями верхней и нижней частей контура профиля. Передняя кромка профиля лопасти имеет радиусы округления верхней части контура в диапазоне 0,009В÷0,017В, а нижней части контура Rн - в диапазоне 0,006В÷0,013В. Максимальная относительная толщина профиля С находится в диапазоне 0,092В÷0,098В и расположена на расстоянии Х=0,24В÷0,45В от передней кромки профиля вдоль его хорды.
Известен профиль NACA-23012, наиболее близкий к заявляемому изобретению (4.3 книги "Вертолеты. Расчет и проектирование". - М.: Машиностроение, 1966), контур которого образован наложением гладкого контура симметричного профиля NACA-0012, описываемого дробно-степенным полиномом, на среднюю линию (по нормали к ней), составленную из носовой части - кубической параболы и хвостовой прямолинейной части, состыкованных без излома и разрыва кривизны контура. Полученная таким образом форма контура профиля-прототипа определяет его аэродинамические характеристики при обтекании воздушным потоком. Основные характеристики профиля NACA-23012 приведены в учебном пособии «Аэродинамические характеристики профиля крыла», В.А. Фролов, - Самара, 2007 г., стр. 21, 23, 28).
Технической проблемой, решаемой заявляемым изобретением, является усовершенствование конструкции несущего винта вертолета за счет аэродинамического профиля, имеющего повышенную подъемную силу на больших числах Маха и минимальное сопротивление, что позволит обеспечить высокую несущую способность лопасти и снизить нагрузки и вибрации, возникающие при срыве потока на концах лопастей; улучшение основных аэродинамических характеристик профиля для концевых сечений лопастей винтов винтокрылых летательных аппаратов, получение хороших эксплуатационных характеристик.
Технический результат данного изобретения состоит в разработке контура аэродинамического профиля с приемлемой несущей способностью и величиной профильного сопротивления (по сравнению с известными профилями для концевых сечений лопастей несущих винтов) в диапазоне чисел М=0,5÷0,9 и CY>0,15, имеющего значительно более высокое качество, за счет меньшего сопротивления, а также более стабильное положение аэродинамического фокуса профиля на основных режимах обтекания в рабочем диапазоне чисел М.
Для достижения технического результата предложен аэродинамический профиль несущего элемента летательного аппарата, который состоит из верхнего и нижнего контура, образованного выпуклыми кривыми и точками их пересечений с заданными координатами относительно хорды профиля, координаты выпуклых кривых отсчитываются от средней линии профиля: верхняя добавляется, нижняя вычитается, координаты определены следующими отношениями, которые рассчитаны для толщины 9% и приведены в таблице 1, где
при этом координаты определены следующими отношениями:
Х/b - отношение координат точек контуров по оси X к длине хорды профиля,
Ycp/b - отношение координат точек средней линии по оси Y к длине хорды профиля,
Yконтур/b - отношение координат точек верхнего и нижнего контуров по оси Y к длине хорды профиля,
параметр по оси X вычисляют по формуле [1]:
X - координата профиля по оси X, м,
b - длина хорды, на которую нужно пересчитать профиль, м,
верхний контур вычисляют по формуле [2]:
Yверх - координата верхней линии профиля, м,
b - длина хорды, на которую нужно пересчитать профиль, м,
нижний контур вычисляется по формуле [3]:
Yниж - координата нижней линии профиля, м;
b - длина хорды, на которую нужно пересчитать профиль, м.
Значения данных координат для толщины 9% приведены в таблице 1.
Кроме того, профиль относится к концевым сечениям лопасти.
При этом толщина профиля определяется в процентах отношением максимальной толщины профиля к длине хорды и составляет от 8 до 15%.
Аэродинамический профиль несущего элемента летательного аппарата, спроектированный в соответствии с сущностью данного изобретения, имеет по сравнению с известными концевыми сечениями лопастей несущих винтов значительные преимущества в основных аэродинамических характеристиках.
Преимущества профиля, разработанного на основе данного изобретения, по сравнению с профилем-прототипом, поясняются чертежами:
фиг. 1 График зависимости коэффициента максимальной подъемной силы от числа Маха для концевой части несущей лопасти;
фиг. 2 График зависимости коэффициента силы сопротивления от числа Маха;
фиг. 3 График зависимости качества от числа Маха,
фиг. 4 График зависимости положения фокуса профиля от числа Маха.
Получение профилей, относительная толщина которых находится в промежутке от 8 до 15%, осуществляется путем умножения ординат, приведенных в таблице на отношение относительной толщины желаемою профиля.
Результаты теоретических исследований были проверены расчетным путем в пакете программ вычислительной аэродинамики (CFD) и проиллюстрированы на графиках (фиг. 1-4).
На фиг. 1 показана зависимость коэффициента максимальной подъемной силы Сушах от числа Маха.
На фиг. 2 показано примерно равное профильное сопротивления с NACA-23012.
Максимальное качество профиля НЦВ-3 при числе Маха 0,7 больше более чем в 2 (два) раза (фиг. 3).
На фиг. 4 можно видеть более стабильное положение фокуса профиля ПЦВ-3 в диапазоне чисел Маха 0,6÷0,9.
Таким образом, аэродинамический профиль лопасти винта, спроектированный в соответствии с сущностью данного изобретения, обладает приемлемой несущей способностью и низким профильным сопротивлением, а также значительно более высоким качеством. Помимо указанных преимуществ, профиль НЦВ-3 имеет более стабильное положение фокуса при изменении чисел Маха, а также позволяет обеспечить пониженное сопротивление на больших числах Маха.
название | год | авторы | номер документа |
---|---|---|---|
Аэродинамический профиль несущего элемента летательного аппарата | 2021 |
|
RU2762464C1 |
Аэродинамический профиль несущего элемента летательного аппарата | 2020 |
|
RU2752502C1 |
Аэродинамический профиль несущего элемента летательного аппарата | 2023 |
|
RU2808522C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2023 |
|
RU2808865C1 |
ЛОПАСТЬ ВИНТА | 1996 |
|
RU2123453C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2022 |
|
RU2789094C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2023 |
|
RU2808523C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 1996 |
|
RU2098321C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА | 2015 |
|
RU2594321C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ НЕСУЩЕЙ ПОВЕРХНОСТИ | 2014 |
|
RU2559181C1 |
Изобретение относится к области авиации, в частности к профилю лопасти несущего винта летательного аппарата, а более конкретно к профилю концевой части лопасти. Аэродинамический профиль НЦВ-3 несущего элемента летательного аппарата содержит контуры верхней и нижней поверхности. Толщина профиля определяется в процентах отношением максимальной толщины профиля к хорде и составляет от 8 до 15%. Аэродинамический профиль лопасти несущего винта летательного аппарата включает в себя верхний и нижний контуры, образованные выпуклыми кривыми и точками их пересечений с заданными координатами относительно хорды профиля. Координаты выпуклых кривых отсчитывают от средней линии профиля, при этом верхнюю координату добавляют, а нижнюю вычитают. Обеспечивается приемлемая несущая способность, низкое профильное сопротивление, более высокое качество, стабильное положение фокуса при изменении чисел Маха. 2 з.п. ф-лы, 4 ил., 1 табл.
1. Аэродинамический профиль несущего элемента летательного аппарата, содержащий верхний и нижний контуры, образованные выпуклыми кривыми и точками их пересечений с заданными координатами относительно хорды профиля, отличающийся тем, что координаты выпуклых кривых отсчитывают от средней линии профиля, при этом верхнюю координату добавляют, а нижнюю вычитают, координаты определены следующими отношениями, которые рассчитаны для толщины 9% и приведены в таблице 1, где
Х/b - отношение координат точек контуров по оси X к длине хорды профиля,
Ycp/b - отношение координат точек средней линии по оси Y к длине хорды профиля,
Yконтур/b - отношение координат точек верхнего и нижнего контуров по оси Y к длине хорды профиля,
параметр по оси X вычисляют по формуле [1]:
X - координата профиля по оси X, м,
b - длина хорды, на которую нужно пересчитать профиль, м,
верхний контур вычисляют по формуле [2]:
Yверх - координата верхней линии профиля, м,
b - длина хорды, на которую нужно пересчитать профиль, м,
нижний контур вычисляется по формуле [3]:
Yниж - координата нижней линии профиля, м;
b - длина хорды, на которую нужно пересчитать профиль, м.
2. Аэродинамический профиль несущего элемента летательного аппарата по п. 1, отличающийся тем, что профиль относится к концевым сечениям лопасти.
3. Аэродинамический профиль несущего элемента летательного аппарата по п. 1, отличающийся тем, что толщина профиля определяется в процентах отношением максимальной толщины профиля к длине хорды и составляет от 8 до 15%.
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ НЕСУЩЕЙ ПОВЕРХНОСТИ | 2014 |
|
RU2558539C1 |
ЛОПАСТНЫЙ ПРОФИЛЬ ДЛЯ НЕСУЩЕГО ВИНТА ЛЕТАТЕЛЬНОГО АППАРАТА И ЛОПАСТЬ НЕСУЩЕГО ВИНТА С ДАННЫМ ПРОФИЛЕМ | 1998 |
|
RU2191717C2 |
US 4412664 A1, 01.11.1983 | |||
US 4416434 A1, 22.11.1983 | |||
Аэродинамический профиль лопасти воздушного винта летательного аппарата | 1983 |
|
SU1540653A3 |
Прибор для иллюстрации разложения силы на две составляющие | 1932 |
|
SU29645A1 |
Авторы
Даты
2022-04-04—Публикация
2021-05-14—Подача