Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления Российский патент 2022 года по МПК G02B1/02 

Описание патента на изобретение RU2771025C1

Изобретение относится к способам создания иммерсионных систем для оптической диагностики прозрачных объектов с высоким показателем преломления, в том числе, драгоценных камней, а также для визуализации внутренней структуры таких объектов методами микроскопии и ввода оптического излучения внутрь таких объектов, в том числе, для их лазерной модификации и для локального оптического возбуждения.

Иммерсионные составы широко используются при исследованиях различных объектов оптическими методами – прежде всего в микроскопии и спектроскопии [О.В. Егорова, Иммерсионный метод микроскопического наблюдения. Обзор. Госстандарт, Москва, Россия]. Коммерчески доступны десятки различных жидких иммерсионных составов, однако их показатель преломления практически не превышает 1,8 [https://www.cargille.com/refractive-index-liquids/]. При этом за последние несколько десятков лет не появилось принципиально новых иммерсионных жидкостей со сколько-нибудь существенно отличающимися параметрами. Большинство применяемых на данный момент составов, в том числе и с высокими показателями преломления около 1,8 – 2, были известны уже в первой половине 20-го века.

Известны иммерсионные жидкости на основе белого фосфора, йодистого метилена, органических растворителей в-бромнафталина, бромоформа, декалина, тетралина, которые имеют высокий показатель преломления (более 1,5) (Справочник химика, т.4, М.-Л.: Химия, с.821). К недостаткам этих жидкостей относится их высокая токсичность, чрезвычайная ядовитость, взрывоопасность и дороговизна.

Известны высокопреломляющие жидкости Мейровитца (Геологический словарь. - М.: Недра. Под ред. К.Н. Паффенгольца и др., 1978, т.1, 486 с.) на основе селена Se, сульфида мышьяка As2S3, бромида мышьяка AsBr3 и йодистого метилена CH2I2, а также иммерсионные жидкости на основе йодистого метилена CH2I2, содержащие белый фосфор, бромид мышьяка AsBr3, сульфид мышьяка As2S3, серу, йодид олова SnI4 и йодид сурьмы SbI3. Существуют жидкости (например, Se2Br2) с показателем преломления равным 2,1. Эти жидкости являются очень токсичными и быстро разлагаются под действием света.

Известны более дешевые и безопасные жидкости на основе йодидов металлов. Например, водный раствор йодидов калия и кадмия, и хлористого цинка с максимальным показателем преломления n=1.625 (Авторское свидетельство СССР N 948994, МПК3: C09K 3/00 и G01M 11/00, опубл. 07.08.1982). Несмотря на достаточную стабильность этой жидкости, она не позволяет получить более высокие показатели преломления одновременно с большими значениями вязкости.

Известна менее стабильная жидкость в виде водного раствора йодида цинка с показателем преломления n=1.64 (Патент РФ №2051940, МПК6: C09K 3/00, G02B 1/ 06 и G01M 1/00, опубл. 10.01.1996). Недостатком этой жидкости является недолговечность сохранения ее высоких оптических свойств, так как через несколько дней в жидкости образуются комплексы, меняющие ее оптические свойства

На данный момент не известны жидкости с показателем преломления n выше 2,1. Таким образом, невозможно их использование для прозрачных объектов с более высоким показателем преломления, например, для алмаза (n = 2,40-2,46), в видимом диапазоне спектра [Васильев Л.А., Белых З.П. Алмазы, их свойства и применение - Москва: Недра, 1983].

Известен способ глубокой пластической деформации кристаллических тел для создания оптических элементов сложной геометрии [Басиев Т.Т., Дорошенко М.Е., Кузнецов С.В., Конюшкин В.А., Осико В.В., Федоров П.П. Керамический лазерный микроструктурированный материал c двойниковой наноструктурой и способ его изготовления. Патент на изобретение № RU 2358045]. Способ глубокой пластической деформации успешно использован для разработки керамических оптических волноводов [Конюшкин В.А., Накладов А.Н., Конюшкин Д.В., Дорошенко М.Е., Осико В.В., Карасик А.Я. Керамические планарные волноводные структуры для усилителей и лазеров // Квант. электроника. 2013. Т. 43. № 1. С. 60–62]. Явление глубокой пластической деформации кристаллов под действием температуры позволяет из плоских заготовок изготавливать таким методом оптические элементы со сложной геометрией, например сферической.

Техническая проблема заявленного изобретения заключается в создании способа для наблюдения внутренней структуры прозрачных объектов с показателем преломления n более 2.1, в том числе драгоценных камней, а также способа ввода оптического излучения без искажения в такие объекты для их лазерной модификации или для локального фотовозбуждения.

Технический результат заключается в решении указанной технической проблемы.

Указанный технический результат реализуется в способе наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления заключающийся в том, что с помощью пресса, при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1 и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

Оптическое окно создают на прозрачной пластинке после прессования путем механической обработки – шлифовки, полировки.

В пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

Прозрачная пластинка состоит из ZnS ,GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

Процесс проводится в атмосфере потока высокочистого аргона.

Процесс проводится в вакууме при давлении 10-1 - 10-3 мм рт.ст.

Процесс приложения нагрузки на пресс длится в течение 5-300 сек.

Процесс проводится при температурах 300-1100°С.

Заявленное изобретения поясняется с использованием поясняющих материалов, где:

На фиг. 1 показана схема преломления лучей на границе объекта.

На фиг. 2 показана схема реализации заявленного изобретения в случае одной пластинки.

При использовании иммерсионного состава показатель преломления по обе стороны границы раздела одинаков, поэтому преломления лучей не происходит (фиг.1).

Отсутствие преломления на границе позволяет визуализировать внутреннюю структуру объекта, а также вводить внутрь него лучи.

Без использования иммерсионного состава лучи преломляются на неоднородной границе объекта, например, природного драгоценного камня за счет разницы показателей преломления.

Кроме алмаза объектами наблюдения могут быть другие материалы с высоким показателем преломления, для которых затруднительно использование «классических» жидких иммерсионных составов: куприт (Cu2O, n=2.848), прустит (Ag3AsS3, n=2.792), фианит (ZrO2, n=2.17), англезит (PbSO4, n= 1.877 - 1.894) и др.

Для реализации способа наблюдения внутренней структуры прозрачных объектов с использованием твердой иммерсионной среды необходимо твердое кристаллическое вещество с показателем преломления, близким к показателю преломления объекта. Например, если объектом является алмаз (показатель преломления 2,42), используют сульфид цинка ZnS, либо селенид цинка ZnSe (показатель преломления 2,6-2,4).

В качестве твердого вещества в иммерсионном составе могут также использоваться, GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

Так, иммерсионный состав, например, ZnSe, берут в форме пластинки, а затем объект 1 вдавливают в иммерсионный состав 2 с помощью пресса 3 при повышенной температуре, например 300-1100°С в атмосфере инертного газа, например высокочистого аргона, либо в вакууме. При давлении 10-1 - 10-3 мм рт.ст., либо прозрачный объект помещают между двумя пластинками иммерсионного состава и производят прессование при повышенной температуре в атмосфере инертного газа либо в вакууме.

За счет пластичности материала иммерсионного состава объект вдавливается в него с образованием на границе оптического контакта. При этом, благодаря гладкой поверхности 4, обеспечивается формирование как минимум одного оптического окна 5. Между твердым иммерсионным составом и объектом формируется оптический контакт, и проходящие лучи 6 не испытывают преломления. В верхней пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

Внутреннюю структуру объекта наблюдают с помощью стандартных методик микроскопии сквозь сформированное оптическое окно на поверхности прозрачной пластинки, твердая иммерсионная среда которой обеспечивает такую возможность, благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта.

Ввод излучения внутрь прозрачного объекта производится сквозь сформированное оптическое окно на поверхности твердой иммерсионной среды (прозрачной пластинки) в виде сходящегося, параллельного, либо сходящегося пучка в зависимости от конкретной технической задачи. Благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта, на ней не происходит искажения вида пучка, и он продолжает распространяться внутри исследуемого прозрачного объекта практически в неизменном виде.

Так как иммерсионный состав находится в твердой фазе, не возникает сильной адгезии к поверхности прозрачного объекта. Кроме того, иммерсионный состав, как правило, менее прочен, чем объект, и поэтому он легко удаляется механически. Альтернативно он может удаляться химически с помощью растворителя, который растворяет твердую иммерсионную среду, но не влияет на исследуемый прозрачный объект.

Альтернативно, оптическое окно 5 создают на иммерсионном составе после прессования путем механической обработки – шлифовки, полировки, например, по способу RU 2338014 C2.

Альтернативно объект помещают между двумя прозрачными пластинками твердого иммерсионного состава и производят прессование при повышенной температуре.

Похожие патенты RU2771025C1

название год авторы номер документа
Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления 2021
  • Хмельницкий Роман Абрамович
  • Кузнецов Сергей Викторович
  • Кудряшов Сергей Иванович
  • Данилов Павел Александрович
  • Смирнов Никита Александрович
  • Левченко Алексей Олегович
RU2759509C1
ИММЕРСИОННАЯ ЖИДКОСТЬ 2012
  • Евстропьев Сергей Константинович
  • Волынкин Валерий Михайлович
  • Титов Александр Николаевич
RU2535065C2
Способ создания и детектирования оптически проницаемого изображения внутри алмаза и системы для детектирования (варианты) 2019
  • Ионин Андрей Алексеевич
  • Кудряшов Сергей Иванович
  • Смирнов Никита Александрович
  • Данилов Павел Александрович
  • Левченко Алексей Олегович
RU2720100C1
Устройство для определения главных показателей преломления кристаллических веществ 1979
  • Коваленко Анатолий Парфентьевич
SU857800A1
ПОЛНОСТЬЮ ОПТИЧЕСКИЙ МОДУЛЯТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ МНОГОСЛОЙНЫХ ГЕТЕРОСТРУКТУР (ВАРИАНТЫ) 2011
  • Станкевич Вячеслав Витальевич
  • Ермоленко Максим Васильевич
  • Буганов Олег Васильевич
  • Тихомиров Сергей Александрович
  • Гапоненко Сергей Васильевич
  • Кузнецов Петр Иванович
  • Якушева Галина Георгиевна
  • Шуленков Алексей Серафимович
RU2477503C2
Жидкая линза, снабженная ей контактная линза и интраокулярное устройство 2023
  • Арсенин Алексей Владимирович
  • Брунов Вячеслав Сергеевич
  • Волков Валентин Сергеевич
  • Ермолаев Георгий Алексеевич
RU2813451C1
УСТРОЙСТВО ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ (ВАРИАНТЫ) 1992
  • Беляев Сергей Васильевич
  • Садчихин Александр Вениаминович
  • Труфанов Алексей Михайлович
RU2054704C1
СПОСОБ ЗАПИСИ ИНФОРМАЦИИ ВНУТРИ КРИСТАЛЛА АЛМАЗА 2020
  • Ионин Андрей Алексеевич
  • Кудряшов Сергей Иванович
  • Смирнов Никита Александрович
  • Данилов Павел Александрович
  • Левченко Алексей Олегович
  • Ковальчук Олег Евгеньевич
RU2750068C1
Деполяризатор 1980
  • Йоахим Бергиер
SU1083146A1
Электрооптический модулятор поляризованного излучения 2023
  • Скоморовский Валерий Иосифович
  • Кушталь Галина Ивановна
  • Токарева Любовь Сергеевна
  • Фирстов Сергей Вячеславович
  • Химич Валерий Анатольевич
  • Зайченко Сергей Евгеньевич
RU2817826C1

Иллюстрации к изобретению RU 2 771 025 C1

Реферат патента 2022 года Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Изобретение относится к способу наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающемуся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину, на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно. 7 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 771 025 C1

1. Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающийся в том, что

с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину,

на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно,

осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

2. Способ по п. 1, отличающийся тем, что оптическое окно создают на прозрачной пластинке после прессования путем механической обработки – шлифовки, полировки.

3. Способ по п. 1, отличающийся тем, в пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

4. Способ по п. 1, отличающийся тем, что прозрачная пластинка состоит из ZnS GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

5. Способ по п. 1, отличающийся тем, что процесс проводится в атмосфере потока высокочистого аргона.

6. Способ по п. 1, отличающийся тем, что процесс проводится в вакууме при давлении 10-1 - 10-3 мм рт.ст.

7. Способ по п. 1, отличающийся тем, что процесс приложения нагрузки на пресс длится в течение 5-300 сек.

8. Способ по п. 1, отличающийся тем, что процесс проводится при температурах 300-1100°С.

Документы, цитированные в отчете о поиске Патент 2022 года RU2771025C1

КЕРАМИЧЕСКИЙ ЛАЗЕРНЫЙ МИКРОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ С ДВОЙНИКОВОЙ НАНОСТРУКТУРОЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Басиев Тасолтан Тазретович
  • Осико Вячеслав Васильевич
  • Конюшкин Василий Андреевич
  • Федоров Павел Павлович
  • Кузнецов Сергей Викторович
  • Дорошенко Максим Евгеньевич
RU2358045C2
US 6396579 B1, 28.05.2002
интернет-источник https://ru.wikipedia.org/wiki/Благородные_газы, опубликованный в Wayback Internet Archive Machine 02.03.2006
интернет-источник https://ru.wikipedia.org/wiki/Иммерсия_(микроскопия), опубликованный в Wayback Internet Archive Machine 29.07.2011.

RU 2 771 025 C1

Авторы

Хмельницкий Роман Абрамович

Кузнецов Сергей Викторович

Кудряшов Сергей Иванович

Данилов Павел Александрович

Ирнов Никита Александрович

Левченко Алексей Олегович

Даты

2022-04-25Публикация

2021-06-07Подача