Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления Российский патент 2021 года по МПК G02B1/02 

Описание патента на изобретение RU2759509C1

Изобретение относится к способам создания иммерсионных систем для оптической диагностики прозрачных объектов с высоким показателем преломления, в том числе драгоценных камней, а также для визуализации внутренней структуры таких объектов методами микроскопии и ввода оптического излучения внутрь таких объектов, в том числе для их лазерной модификации, для локального оптического возбуждения.

Иммерсионные составы широко используются при исследованиях различных объектов оптическими методами - прежде всего в микроскопии и спектроскопии [О.В. Егорова, Иммерсионный метод микроскопического наблюдения. Обзор. Госстандарт, Москва, Россия]. Коммерчески доступны десятки различных жидких иммерсионных составов, однако их показатель преломления практически не превышает 1,8 [https://www.cargille.com/refractive-index-liquids/]. При этом за последние несколько десятков лет не появилось принципиально новых иммерсионных жидкостей со сколько-нибудь существенно отличающимися параметрами. Большинство применяемых на данный момент составов, в том числе и с высокими показателями преломления около 1,8 - 2, были известны уже в первой половине 20-го века.

Известны иммерсионные жидкости на основе белого фосфора, йодистого метилена, органических растворителей β-бромнафталина, бромоформа, декалина, тетралина, которые имеют высокий показатель преломления (более 1,5) (Справочник химика, т.4, М.-Л.: Химия, с.821). К недостаткам этих жидкостей относится их высокая токсичность, чрезвычайная ядовитость, взрывоопасность и дороговизна.

Известны высокопреломляющие жидкости Мейровитца (Геологический словарь. - М.: Недра. Под ред. К.Н. Паффенгольца и др., 1978, т.1, 486 с.) на основе селена Se, сульфида мышьяка As2S3, бромида мышьяка AsBr3 и йодистого метилена CH2I2, а также иммерсионные жидкости на основе йодистого метилена CH2I2, содержащие белый фосфор, бромид мышьяка AsBr3, сульфид мышьяка As2S3, серу, йодид олова SnI4 и йодид сурьмы SbI3 . Существуют жидкости (например, Se2Br2) с показателем преломления равным 2,1. Эти жидкости являются очень токсичными и быстро разлагаются под действием света.

Известны более дешевые и безопасные жидкости на основе йодидов металлов. Например, водный раствор йодидов калия и кадмия и хлористого цинка с максимальным показателем преломления n=1.625 (Авторское свидетельство СССР N 948994, МПК3: C09K 3/00 и G01M 11/00, опубликованное 07.08.1982). Но при достаточной стабильности этой жидкости она не позволяет получить более высоких показателей преломления одновременно с большими значениями вязкости.

Известна менее стабильная жидкость в виде водного раствора йодида цинка с показателем преломления n=1.64 (Патент РФ № 2051940, МПК6: C09K 3/00, G02B 1/ 06 и G01M 1/00, опубликованный 10.01.1996). Но недостатком этой жидкости является недолговечность сохранения ее высоких оптических свойств. Через несколько дней в жидкости образуются комплексы, меняющие ее оптические свойства

На данный момент не известны жидкости с показателем преломления n выше 2,1. Таким образом, невозможно их использование для прозрачных объектов с более высоким показателем преломления, например, для алмаза, (n = 2,40-2,46) в видимом диапазоне спектра [Васильев Л.А., Белых З.П. Алмазы, их свойства и применение - Москва: Недра, 1983].

В ИК-спектроскопии известен и широко используется метод подготовки проб, при котором твердое исследуемое вещество перетирается до получения частиц субмикронных размеров, смешивается с мелкодисперсным буферным материалом (как правило KBr), а затем прессуется в форме таблетки, удобной для спектроскопических исследований [Смит, А.Л. Прикладная ИК-спектроскопия: Основы, техника, аналит. применение / А. Смит; Пер. с англ. Б. Н. Тарасевича. - М.: Мир, 1982.]. При размерах частиц меньше длины волны зондирующего излучения и небольшой толщине таблетки рассеяние в ней невелико, и она относительно прозрачна в ИК-диапазоне.

Известны способы создания прозрачных керамических составов, в том числе, с высокими показателями преломления. Например, из ZnSe получают прозрачные керамические материалы [A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, Hot-pressed ceramic Cr2+: ZnSe gain-switched laser. Optics Express (2006) 14(24): 11694-11701.], [I. P. Shcherbakova, A. A. Dunaev, A. G. Kadomtseva, and A. E. Chmel, Impact Fracture of ZnSe Ceramics, PHYSICS OF THE SOLID STATE Vol. 58 No. 10 2016], [Hao Lu et al., Optical properties of transparent ZnSe0.9S0.1 mixed crystal ceramics prepared by hot isostatic pressing, Optical Materials, Volume 108, October 2020, 110214]. ZnS также широко используется для получения прозрачных керамик [Roy Johnson et al., Zinc Sulfide Ceramics for Infrared Optics, Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_16-1].

Техническая проблема заявленного изобретения заключается в создании иммерсионной среды с показателем преломления n более 2,1 для наблюдения внутренней структуры прозрачных объектов с аналогичными показателями преломления, в том числе драгоценных камней, а также проблему ввода оптического излучения в такие объекты для их лазерной модификации или для локального фотовозбуждения.

Технический результат заключается в решении указанной технической проблемы.

Указанный технический результат достигается в способе создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления заключающийся в том, что прозрачный объект в пресс-форме засыпают иммерсионным порошком, состоящим из твердого вещества с показателем преломления n более 2.1, где n - абсолютный показатель преломления, переводят иммерсионный порошок в состояние прозрачной твердой керамики путем его вакуумирования, прессования и спекания; пресс-форму с указанным иммерсионным порошком и прозрачным объектом охлаждают, извлекают из нее полученную твердую иммерсионную среду с прозрачным объектом внутри неё; внутреннюю структуру прозрачного объекта наблюдают сквозь сформированное по меньшей мере одно оптическое окно на поверхности твердой иммерсионной среды.

Оптическое окно создают на твердой иммерсионной среде после ее перевода в форму прозрачной керамики путем механической обработки - шлифовки, полировки.

Оптическое окно создают в процессе перевода иммерсионного порошка в состояние прозрачной твердой керамики.

Иммерсионный порошок вводят добавку, состоящую из порошкообразного вещества с показателем преломления, отличающимся от показателя преломления указанного иммерсионного порошка, с концентрацией указанной добавки от 0,1 до 30% по объему, в результате получают эффективный показатель преломления твердой иммерсионной среды, лежащий в диапазоне между показателями преломления иммерсионного порошка и добавки.

Заявленное изобретения поясняется с использованием поясняющих материалов, где:

На фиг. 1- схема преломления лучей на границе объекта.

На фиг. 2- схема реализации заявленного изобретения.

При использовании иммерсионного состава показатель преломления по обе стороны границы раздела одинаков, поэтому преломления лучей не происходит (см. фиг. 1).

Отсутствие преломления на границе позволяет визуализировать внутреннюю структуру объекта, а также вводить внутрь него оптическое излучение.

Без использования иммерсионного состава лучи преломляются на неоднородной границе объекта, например, природного драгоценного камня за счет разницы показателей преломления.

Кроме алмаза объектами наблюдения могут быть другие материалы с высоким показателем преломления, для которых затруднительно использование «классических» жидких иммерсионных составов: куприт (Cu2O, n=2,848), прустит (Ag3AsS3, n=2,792), фианит (ZrO2, n=2,17), англезит (PbSO4, n= 1,877 - 1,894) и др.

Для реализации способа наблюдения внутренней структуры прозрачных объектов с использованием твердой иммерсионной среды берут твердое вещество в форме порошка (иммерсионный состав) с показателем преломления, близким к показателю преломления объекта, например, если объектом является алмаз (показатель преломления 2,42), берут сульфид цинка ZnS, либо селенид цинка ZnSe (показатель преломления в видимой и ближней ИК области спектра 2,6-2,4).

Далее указанный иммерсионный состав, например, ZnSe, берут в форме порошка, затем объект 1 (фиг.2) засыпают указанным порошком 2 в пресс-форме 3, а затем переводят порошок в состояние прозрачной керамики, например, путем его вакуумирования, прессования, и спекания 4. Пресс-форму охлаждают, извлекают из нее полученный твердую иммерсионную среду 5 с объектом внутри неё, со сформированным как минимум одним оптическим окном 6. При этом между твердой иммерсионной средой и объектом формируется оптический контакт, и проходящие лучи 7 не испытывают преломления.

Внутреннюю структуру объекта наблюдают с помощью стандартных методик микроскопии сквозь сформированное оптическое окно на поверхности иммерсионного состава. Твердая иммерсионная среда обеспечивает такую возможность, благодаря отсутствию преломления лучей на криволинейной поверхности объекта.

Ввод излучения внутрь объекта производится сквозь сформированное оптическое окно на поверхности твердой иммерсионной среды в виде сходящегося, параллельного, либо расходящегося пучка в зависимости от конкретной технической задачи. Благодаря отсутствию преломления лучей на криволинейной поверхности объекта, на ней не происходит искажения вида пучка, и он продолжает распространяться внутри объекта практически в неизменном виде.

Так как иммерсионный состав находится в твердой фазе, не возникает сильной адгезии к поверхности объекта. Кроме того, иммерсионный состав, как правило, менее прочен, чем объект, и поэтому он легко удаляется механически. Альтернативно он может удаляться химически с помощью растворителя, который растворяет твердую иммерсионную среду, но не влияет на объект.

Альтернативно, оптическое окно 6 создают на твердой иммерсионной среде после её перевода в форму прозрачной керамики путем механической обработки - шлифовки, с последующей химико-механической полировкой.

Для управления показателем преломления иммерсионного состава (в случае, если необходимо изменить показатель преломления) в него вводят в качестве добавки небольшое количество вещества с большим или меньшим показателем преломления в форме порошка (аналогично методу, применяемому в ИК спектроскопии). Например, KBr, традиционно используемый в ИК спектроскопии. Количество рассчитывается индивидуально, исходя из требуемого эффективного показателя преломления состава, например, по формуле Максвелла Гарнетта или Бруггемана. Концентрация указанной добавки может составлять от 0.1 до 30% по объему. Значение показателя преломления такой смеси лежит между значениями показателей преломления компонентов и зависит от их объемных долей в соответствии с указанными формулами.

Похожие патенты RU2759509C1

название год авторы номер документа
Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления 2021
  • Хмельницкий Роман Абрамович
  • Кузнецов Сергей Викторович
  • Кудряшов Сергей Иванович
  • Данилов Павел Александрович
  • Ирнов Никита Александрович
  • Левченко Алексей Олегович
RU2771025C1
ИММЕРСИОННАЯ ЖИДКОСТЬ 2012
  • Евстропьев Сергей Константинович
  • Волынкин Валерий Михайлович
  • Титов Александр Николаевич
RU2535065C2
Способ получения оптической нанокерамики на основе твердых растворов системы TlBrI- AgClBr (варианты) 2023
  • Жукова Лия Васильевна
  • Салимгареев Дмитрий Дарисович
  • Кондрашин Владислав Максимович
  • Южаков Иван Владимирович
  • Южакова Анастасия Алексеевна
  • Львов Александр Евгеньевич
  • Пестерева Полина Владимировна
  • Корсаков Александр Сергеевич
RU2818885C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ОПТИЧЕСКИ ПРОЗРАЧНОГО МАТЕРИАЛА 2016
  • Акашев Лев Александрович
  • Попов Николай Александрович
  • Шевченко Владимир Григорьевич
  • Антонов Борис Дмитриевич
  • Кочедыков Виктор Анатольевич
RU2629695C2
Датчик химического состава вещества 2020
  • Матвеев Борис Анатольевич
RU2761501C1
ДАТЧИК ХИМИЧЕСКОГО СОСТАВА ВЕЩЕСТВА 2020
  • Карандашев Сергей Аркадьевич
  • Матвеев Борис Анатольевич
  • Ременный Максим Анатольевич
  • Мохаммед Бен Чоуйка
RU2753854C1
Способ допирования MgO-nAlO керамик ионами железа 2018
  • Осипов Владимир Васильевич
  • Платонов Вячеслав Владимирович
  • Шитов Владислав Александрович
  • Лукьяшин Константин Егорович
RU2684540C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМООКСИДНОЙ НАНОКЕРАМИКИ 2009
  • Гарибин Евгений Андреевич
  • Голикова Евгения Викторовна
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Миронов Игорь Алексеевич
  • Смирнов Андрей Николаевич
  • Соловьев Сергей Николаевич
RU2402506C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕННОСТИ ДРАГОЦЕННОГО КАМНЯ 2006
  • Шлезингер Хаим
  • Зискинд Ран
  • Девир Адам
  • Шеффер Дэн
RU2454658C2
ДАТЧИК ХИМИЧЕСКОГО СОСТАВА ВЕЩЕСТВА 2022
  • Матвеев Борис Анатольевич
RU2788588C1

Иллюстрации к изобретению RU 2 759 509 C1

Реферат патента 2021 года Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Изобретение относится к области электротехники, а именно к способу создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, и может быть использовано для оптической диагностики и визуализации внутренней структуры объектов методами микроскопии путем ввода оптического излучения внутрь таких объектов, в том числе для их лазерной модификации или локального оптического возбуждения. Повышение стабильности способа исследования внутренней структуры прозрачных объектов с показателями преломления более 2.1, в том числе драгоценных камней, является техническим результатом изобретения, который достигается за счет того, что прозрачный объект в пресс-форме засыпают иммерсионным порошком, в состав которого входит твердое вещество, имеющее показатель преломления n более 2.1, где n - абсолютный показатель преломления, после чего переводят иммерсионный порошок в состояние прозрачной твердой керамики путем его вакуумирования, прессования и спекания; пресс-форму с указанным иммерсионным порошком и прозрачным объектом охлаждают, извлекают из нее полученную твердую иммерсионную среду с прозрачным объектом внутри неё, после чего формируют по меньшей мере одно оптическое окно на поверхности твердой иммерсионной среды путем механической обработки - шлифовки, полировки. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 759 509 C1

1. Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающийся в том, что

прозрачный объект в пресс-форме засыпают иммерсионным порошком, состоящим из твердого вещества с показателем преломления n более 2.1, где n – абсолютный показатель преломления;

переводят иммерсионный порошок в состояние прозрачной твердой керамики путем его вакуумирования, прессования и спекания;

пресс-форму с указанным иммерсионным порошком и прозрачным объектом охлаждают;

извлекают из нее полученную твердую иммерсионную среду с прозрачным объектом внутри неё;

внутреннюю структуру прозрачного объекта наблюдают сквозь сформированное по меньшей мере одно оптическое окно на поверхности твердой иммерсионной среды.

2. Способ по п. 1, отличающийся тем, что оптическое окно создают на твердой иммерсионной среде после ее перевода в форму прозрачной керамики путем механической обработки – шлифовки, полировки.

3. Способ по п. 1, отличающийся тем, что и оптическое окно создают в процессе перевода иммерсионного порошка в состояние прозрачной твердой керамики.

4. Способ по п. 1, отличающийся тем, что в указанный иммерсионный порошок вводят добавку, состоящую из порошкообразного вещества с показателем преломления, отличающимся от показателя преломления указанного иммерсионного порошка, с концентрацией указанной добавки от 0,1 до 30% по объему, в результате получают эффективный показатель преломления твердой иммерсионной среды, лежащий в диапазоне между показателями преломления иммерсионного порошка и добавки.

Документы, цитированные в отчете о поиске Патент 2021 года RU2759509C1

Hao Lu et al., Optical properties of transparent ZnSe0.9S0.1 mixed crystal ceramics prepared by hot isostatic pressing, Optical Materials, Volume 108, October 2020, 110214
Способ подбора эффективной дозы бета-адреноблокаторов при кардиомиопатиях у детей 2019
  • Гордеева Ольга Борисовна
  • Басаргина Елена Николаевна
  • Бабайкина Марина Анатольевна
  • Вашакмадзе Нато Джумберовна
  • Зимин Алексей Алексеевич
RU2719909C1
КЛАПАННОЕ УСТРОЙСТВО 1972
SU429210A1
ПРОСВЕТЛЯЮЩЕЕ ПОКРЫТИЕ 1995
  • Глебов В.Н.
  • Малютин А.М.
RU2097801C1
JP 1145601 A, 07.06.1989
ФИЛЬТР ПУЛЬСАЦИИ СТЕНОК СОСУДОВ ДЛЯ УЛЬТРАЗВУКОВОГО АНАЛИЗА МИТРАЛЬНОЙ РЕГУРГИТАЦИИ 2011
  • Вэй Цифэн
  • Тиле Карл Э.
RU2605417C2

RU 2 759 509 C1

Авторы

Хмельницкий Роман Абрамович

Кузнецов Сергей Викторович

Кудряшов Сергей Иванович

Данилов Павел Александрович

Смирнов Никита Александрович

Левченко Алексей Олегович

Даты

2021-11-15Публикация

2021-06-07Подача