Изобретение относится к области металлургии, точнее к производству стали в дуговых сталеплавильных электропечах, и может быть использовано при производстве электростали с использованием металлолома.
Известно, что при выплавке стали в дуговых электросталеплавильных печах с основной футеровкой для снижения износа футеровки обычно проводят увеличение основности (отношение суммы концентрации основных оксидов к сумме концентраций кислотных, в простейшем случае (CaO)/(SiO2)) [Григорян В.Α., Белянчиков Л.Н., Стомахин А.Я. Теоретические основы электросталеплавильных процессов. - М.: Металлургия, 1987-272 с.]
Для повышения основности футеровки практикуют введение оксидов магния. Так известен [пат РФ 2657258] высокотемпературный магнезиальный флюс для сталеплавильной печи, включающий оксиды магния, алюминия, железа, кальция, кремния, углеродсодержащий материал, и оксид хрома при следующем соотношении компонентов, масс. %:
при этом в качестве оксидных компонентов используют плавленые отходы огнеупорных материалов, а флюс имеет технологическую фракцию 5,0-40,0 мм (RU №2657258 МПК С21С 5/36, С21С 5/54, С22В 1/14, опубл. 09.06.2018).
Существенными недостатками данного флюса являются:
- высокий расход электроэнергии на плавку в связи с использованием тугоплавких материалов, в частности Cr2O3;
- повышенная длительность плавки в связи с использованием крупной фракции материала и высокой температурой плавления используемого флюса.
Для защиты стен дуговой электропечи от излучения дуги электродов обычно проводится операция вспенивания шлака в печи путем просадки (вдувания) в. печь углеродсодержащих материалов.
Известен также способ выплавки стали из металлолома в дуговой электропечи включающий загрузку металлолома на подину, его расплавление, науглероживание расплава. В расплав в струе газа вдувают порошкообразную смесь извести и углеродсодержащего материала при их соотношении 1: 1 и с расходом смеси, равным 0,4-3,0% от массы расплава. Скорость науглероживания расплава поддерживают в пределах 0,2-0,6% углерода в минуту. Порошкообразную смесь вдувают в расплав до получения в нем требуемого перед началом окислительного периода содержания углерода. В качестве газа используют азот или аргон. В качестве углеродсодержащего материала - порошкообразный кокс, уголь или графит (RU №2107738 МПК С21С 5/52, опубл. 27.03.1998).
Техническая проблема, решаемая заявляемым изобретением, заключается в обеспечении высокой стойкости футеровки стен дуговой электросталеплавильной печи, а также снижении расхода электродов, электроэнергии и длительности плавки.
Для решения существующей технической проблемы в расплав в струе газа вдувают порошкообразную смесь, состоящую из серпентинитомагнезита, магнезита и углеродсодержащего материала.
Для этого предлагается способ выплавки стали из металлолома в дуговой электропечи, включающий загрузку на подину печи металлолома, его расплавление, науглероживание расплава путем вдувания в расплав в струе газа углеродсодержащего материала, окислительный и восстановительный периоды, согласно изобретению, науглероживание расплава осуществляют в струе азота при давлении не менее 9,0 атм путем вдувания порошкообразной смеси, состоящей из серпентинитомагнезита, магнезита и углеродсодержащего материала в соотношении соответственно (25-30):(10-15):(55-65) и с расходом смеси 4,0-16,2 кг/т от массы расплава, при этом фракция каждой составляющей смеси соответствует 0,1-3,0 мм.
Технические результаты, получаемые в результате использования изобретения, заключаются:
- в повышении стойкости футеровки печи за счет образования гарнисажа, вследствие ввода в состав смеси серпентинитомагнезита, магнезита и углеродсодержащего материала;
- в снижении длительности плавки за счет интенсификации процессов вспенивания шлака за счет образования СО и СО2 и поддержания шлака во вспененном состоянии за счет оксидов магния из серпентинитомагнезита и магнезита;
- в снижении расхода электродов за счет хорошего вспенивания шлака;
- в уменьшении расхода электроэнергии за счет сокращения длительности плавки и интенсификации процессов плавления шихты.
Заявляемые пределы подобраны эмпирическим путем, исходя из полученных результатов, в частности, образования гарнисажа на футеровке печи и связанную с этим стойкость стен; эффективностью процесса вспенивания шлака и получения высоких технико-экономических показателей - расхода электродов, электроэнергии и длительности плавки.
Использование порошка серпентинитомагнезита, магнезита и углеродсодержащего материала фракцией более 3 мм замедляет процесс растворения вдуваемой смеси, что сказывается на степени эффективности вспенивания шлака, при использовании фракции менее 0,1 мм наблюдается неэффективное использование материала, вследствие улета мелкой фракции через газоочистку.
Содержание серпентинитомагнезита и магнезита выбрано исходя из обеспечения требуемого содержания оксида магния в шлаке, обеспечивающего наличие гарнисажа на футеровке печи. При этом при расходе соответственно серпентинитомагнезита менее 25% и магнезита менее 10% образование гарнисажа было незначительным, а повышение расхода серпентинитомагнезита более 30% и магнезита более 15% приводило к повышению вязкости шлака и связанным с этим увеличением температуры плавления смеси, что сказывалось на повышении расхода электроэнергии и электродов.
При расходе углеродсодержащего материала менее 55% наблюдалось неэффективное укрытие дуг, что приводило к повышенному износу футеровки печи и высокому расходу электроэнергии и электродов. Увеличение данного материала более 65% приводило к резкому вспениванию шлака и в ряде случаев выбросам из печи.
При вдувании порошкообразной смеси с давлением несущего газа менее 9 атм, осуществить процесс вдувания не удается, а при давлении более 9 атм, значительно увеличивается расход несущего газа и соответственно увеличиваются затраты, что нежелательно.
Опыты проводили с использованием серпентинитомагнезита марки СММ-2 Халиловского месторождения по ТУ 5716-001-46754744-2005, % масс: SiO2 не более 38,0%, MgO не менее 38,0%, СаО не менее 2,0%, Fe2O3 не более 5%, при показателе влажность не более 1,0%, п.п.п. не более 18%.
В качестве углеродсодержащего материала использовали антрацит Горловского бассейна (по ТУ 05.10.10.-001-53872533-2019) с химическим составом, в масс. %: нелетучего углерода не менее 78%, зольность не более 14%, выход летучих веществ не более 8,0%, при содержания серы не более 0,4%.
Экспериментальные плавки проводили на ДСП 100Н10 при выплавке стали марки Э76ХФ.
Выплавка проводилась по следующей схеме. Завалка состояла из 100-120 т металлолома, 5-35 т твердого чугуна и 2-45 т извести. Окисление углерода проводили в печи до концентрации 0,05-0,20% посредством продувки кислородом, при этом температура в печи изменялась в пределах 1630-1710°С.
В процессе плавки после отработки (140-250) кВт⋅ч/т завалки производилось вдувание в струе азота при давлении несущего газа 9,0 атм порошкообразной смеси, состоящей из серпентинитомагнезита, магнезита и углеродсодержащего материала фракции 0,1-3,0 мм в соотношении соответственно (25-30):(10-15):(55-65) и с расходом 400-1620 кг на плавку, что соответствует 4.0-16,2 кг/т от массы расплава.
Использование заявляемого способа производства стали по сравнению с прототипом позволяет:
- снизить длительность плавки на 1,0-1,2 мин;
- уменьшить расход электродов на 0,08-0,12 кг/т;
- снизить расход электроэнергии на 8-14 кВт⋅ч/т;
- повысить стойкость футеровки печи до 1460 плавок.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫПЛАВКИ СТАЛИ ИЗ МЕТАЛЛОЛОМА В ДУГОВОЙ ЭЛЕКТРОПЕЧИ | 2021 |
|
RU2771888C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ ИЗ МЕТАЛЛОЛОМА В ДУГОВОЙ ЭЛЕКТРОПЕЧИ | 2021 |
|
RU2770657C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2008 |
|
RU2374329C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ ИЗ МЕТАЛЛОЛОМА В ДУГОВОЙ ЭЛЕКТРОПЕЧИ | 1996 |
|
RU2107738C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2016 |
|
RU2645170C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2012 |
|
RU2493263C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ | 2007 |
|
RU2347820C2 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОПЕЧИ С КИСЛОЙ ФУТЕРОВКОЙ | 2021 |
|
RU2760903C1 |
СПОСОБ ВЫПЛАВКИ РЕЛЬСОВОЙ СТАЛИ | 2007 |
|
RU2346059C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2007 |
|
RU2352645C1 |
Изобретение относится к области металлургии и может быть использовано при производстве стали в дуговых сталеплавильных электропечах с использованием металлолома. Осуществляют загрузку на подину печи металлолома, его расплавление, науглероживание расплава, окислительный и восстановительный периоды. Науглероживание расплава осуществляют путем вдувания в расплав в струе азота при давлении не менее 9,0 атм порошкообразной смеси, состоящей из серпентинитомагнезита, магнезита и углеродсодержащего материала в соотношении соответственно (25-30):(10-15):(55-65) и с расходом смеси 4,0-16,2 кг/т от массы расплава, при этом фракция каждой составляющей смеси соответствует 0,1-3,0 мм. Изобретение позволяет снизить длительность плавки на 1,0-1,2 мин и расход электроэнергии на 8-14 кВт⋅ч/т, уменьшить расход электродов на 0,08-0,12 кг/т, а также повысить стойкость футеровки печи до 1460 плавок.
Способ выплавки стали из металлолома в дуговой электропечи, включающий загрузку на подину печи металлолома, его расплавление, науглероживание расплава путем вдувания в расплав в струе газа углеродсодержащего материала, окислительный и восстановительный периоды, отличающийся тем, что науглероживание расплава осуществляют в струе азота при давлении не менее 9,0 атм путем вдувания порошкообразной смеси, состоящей из серпентинитомагнезита, магнезита и углеродсодержащего материала в соотношении соответственно (25-30):(10-15):(55-65) и с расходом смеси 4,0-16,2 кг/т от массы расплава, при этом фракция каждой составляющей смеси соответствует 0,1-3,0 мм.
СПОСОБ ВЫПЛАВКИ СТАЛИ ИЗ МЕТАЛЛОЛОМА В ДУГОВОЙ ЭЛЕКТРОПЕЧИ | 1996 |
|
RU2107738C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2008 |
|
RU2374329C1 |
Шихта и способ получения флюса и огнеупорного материала для сталеплавильного производства (варианты) с ее использованием | 2020 |
|
RU2749446C1 |
US 5397379 A, 14.03.1995 | |||
W0 2004035837 A, 29.04.2004 | |||
JP 63176416 A, 20.07.1988. |
Авторы
Даты
2022-05-13—Публикация
2021-12-17—Подача