Способ корректировки погрешности показаний мощности ядерного реактора Российский патент 2022 года по МПК G21C17/00 

Описание патента на изобретение RU2771891C1

Настоящее изобретение относится к области ядерной энергетики, а именно к области контроля нейтронного потока для обеспечения контроля, управления и защиты корпусных ядерных реакторов.

Изобретение может быть использовано для коррекции погрешности показаний мощности ядерного реактора и аппаратуры контроля нейтронного потока (далее - АКНП) на основании показаний детекторов прямой зарядки (далее - ДПЗ) системы внутриреакторного контроля (далее - СВРК).

АКНП определяет мощность ядерного реактора по показаниям внереакторных датчиков нейтронного потока для использования получаемого значения мощности в системе управления и защиты (далее - СУЗ) ядерного реактора.

Алгоритм автоматической корректировки показаний мощности (далее -АКПМ) входит в состав алгоритма работы АКНП. АКНП должна обеспечивать защиту реакторной установки (далее - РУ) от превышения уровня локальной мощности.

АКНП состоит из двух комплектов, каждый из которых содержит в себе три или четыре независимых канала контроля (в зависимости от требований проекта). На основании показаний блоков детектирования, входящих в состав АКНП, осуществляется расчет основных нейтронно-физических характеристик РУ - относительной физической мощности и скорости ее изменения (периода). Вычисленные значения мощности и периода сравниваются со значениями аварийных уставок, и, в случае превышения уставок, формируются инициирующие сигналы предупредительной и аварийной защит.

АКПМ предназначена для корректировки показаний мощности, вычисляемой АКНП, с учетом влияния факторов, приводящих к увеличению погрешности вычислений мощности, рассчитываемой на основании показаний плотности нейтронного потока, регистрируемого блоками детектирования. АКПМ нивелирует влияние следующих факторов:

- изменения показаний блока детектирования плотности потока нейтронов (далее - БДПН) при перераспределении нейтронного поля, вызванного перемещением органов регулирования системы управления и защиты (далее - ОР СУЗ);

- изменения показаний БДПН при изменении плотности теплоносителя в опускном участке, вследствие изменения его температуры;

- изменения показаний БДПН при перераспределении нейтронного поля, вызванного выгоранием ядерного топлива;

- остаточное энерговыделение в реакторе (не связанное с регистрируемым нейтронным потоком);

- запаздывание в канале измерения температур;

- отказы датчиков.

При перемещении групп ОР СУЗ происходит пространственное перераспределение потока нейтронов по объему активной зоны и, следовательно, показания БДПН АКНП изменяются. Если перемещаемая группа ОР СУЗ расположена далеко от внешней границы активной зоны, то будет наблюдаться следующее поведение потока нейтронов при изменении ее положения.

При погружении группы ОР СУЗ, расположенной ближе к центру аварийной защиты (далее - АЗ), но дальше от ее внешнего края, интегральное значение мощности РУ в общем случае будет снижаться быстрее и на большую величину, чем локальная мощность на периферии активной зоны, а, следовательно, непропорционально снижению значения интегральной мощности АЗ (или ее сектора), будет снижаться и регистрируемый блоками детектирования нейтронный поток. При извлечении стержней ОР СУЗ, расположенных близко к центру АЗ, будет наблюдаться обратный эффект. При этом, в режимах, связанных с нагрузкой и разгрузкой РУ, подавлением ксеноновых колебаний, в режимах суточного регулирования, нивелирование этого эффекта представляет собой решение целого комплекса многомерных уравнений с большим количеством переменных.

Одной из таких переменных, имеющих относительно неоднозначную функцию связи с локальной мощностью активной зоны, является положение групп (и отдельных органов регулирования) СУЗ.

Известен способ определения тепловой мощности ядерного реактора (авторское свидетельство №1235382 на изобретение) путем измерения излучения вне активной зоны с помощью датчиков нейтронного излучения, в котором нейтронное излучение измеряют по меньшей мере в двух точках с различной зависимостью показаний датчиков от аксиального офсета и тепловой мощности.

В способе учтена зависимость показаний внереакторных датчиков нейтронного излучения от неравномерности энергораспределения по высоте активной зоны путем нахождения регрессионной зависимости значения аксиального офсета энергораспределения, определяемого как разность мощностей в нижней и верхней половинах активной зоны, отнесенная к значению тепловой мощности, и регрессионной зависимости значения тепловой мощности от значения показаний внереакторных датчиков нейтронного излучения и значения аксиального офсета.

Недостатком известного способа является недостаточность информации о состоянии ядерного реактора для корректного учета зависимости показаний внереакторных датчиков от формы энергораспределения в активной зоне при определении по их показаниям значения тепловой мощности реактора.

Наиболее близким аналогом к заявляемому техническому решению является способ контроля нейтронного потока ядерного реактора, описанный в патенте РФ №2310248 на изобретение «Система контроля нейтронного потока ядерного реактора». В известном способе используются рассчитываемые заранее таблицы поправочных коэффициентов, размещаемые в памяти микропроцессорных модулей АКНП, используются также сигналы от отдельных приводов нескольких групп ОР СУЗ от системы группового и индивидуального управления (далее - СГИУ). Таблицы поправочных коэффициентов рассчитываются заранее по программам нейтронно-физического расчета активных зон для различных моментов выгорания топливной загрузки и для различных положений групп ОР СУЗ. Учет зависимости показаний внереакторных датчиков нейтронного излучения от формы энергораспределения осуществляется с помощью поправочных коэффициентов, выбираемых в процессе работы в соответствии с текущим моментом выгорания топливной загрузки и значениями сигналов о положении ОР СУЗ от СГИУ.

Недостатком ближайшего аналога является большая погрешность при определении значения тепловой мощности реактора в связи с нарушением пропорциональности показаний внереакторных датчиков значению тепловой мощности реакторной установки, что обусловлено следующими факторами:

- информация о положении отдельных ОР СУЗ из нескольких групп ОР СУЗ рассматривается, как информация о положении самих групп ОР СУЗ, что приводит к отсутствию учета изменения формы энергораспределения при рассогласовании положения ОР СУЗ в группе и, как следствие, к отклонению значения мощности по АКНП от реального значения тепловой мощности;

- перемещение отдельного ОР СУЗ (падение или извлечение) будет учтено, как перемещение всей группы ОР СУЗ (если сигнал СГИУ о положении этого ОР СУЗ передается в АКНП) или не будет учтено (если сигнал СГИУ о положении этого ОР СУЗ не передается в АКНП);

- вероятность отличия в процессе работы реактора реального значения выгорания топлива от рассчитанного и использованного в предварительных нейтронно-физических расчетах коэффициентов корректировки мощности реактора;

- нарушение пропорциональности показаний внереакторных датчиков значению тепловой мощности реакторной установки при изменении формы энергораспределения в активной зоне путем перемещения групп ОР СУЗ, расположенных ближе к центру активной зоны реактора.

Задачей, решаемой предлагаемым изобретением, является высокая точность определения скорректированного значения мощности ядерного реактора на основе коррекции мощности АКНП по показаниям внереакторных датчиков нейтронного потока, с учетом их зависимости от формы энергораспределения в активной зоне, полученной от внутриреакторных детекторов СВРК.

Технический результат, достигаемый настоящим изобретением, заключается в обеспечении своевременного и точного определения корректировки погрешности показаний мощности ядерного реактора при любых режимах его работы и, как следствие, в обеспечении безопасности и надежности эксплуатации ядерного реактора.

Сущность изобретения состоит в том, что в способе корректировки погрешности показаний мощности ядерного реактора, заключающемся в том, что плотность нейтронного потока в каждый момент времени измеряют с помощью сборок блоков детектирования, размещенных вне корпуса реактора, и по полученным результатам измерений определяют скорректированное значение мощности ядерного реактора с учетом поправочных коэффициентов, предложено плотность нейтронного потока измерять вне корпуса реактора по показаниям сборок блоков детектирования, равномерно размещенных по периметру и высоте корпуса реактора, дополнительно измерять плотность нейтронного потока в каждый момент времени с помощью попарно размещенных по периферии корпуса реактора напротив друг друга не менее двух сборок детектирования, равномерно размещенных по высоте активной зоны реактора, измеренные значения плотности нейтронного потока вне корпуса реактора корректировать в зависимости от показаний плотности внутри активной зоны, а корректировку погрешности показаний мощности ядерного реактора вычислять по формуле:

P(t) = А * Kr(t) * Kz(t) * D(t),

где P(t) - откорректированное значение мощности реактора в конкретный момент времени по показаниям сборки блоков детектирования, расположенной вне реактора;

D - показание сборок блоков детектирования в конкретный момент времени, расположенных вне реактора;

Kr - поправочный коэффициент, учитывающий влияние изменения радиально-азимутальной формы энергораспределения на показания сборок блоков детектирования, расположенных вне реактора, и определяемый по показаниям сборок блоков детектирования, размещенных внутри реактора;

Kz - поправочный коэффициент, учитывающий влияние изменения аксиального энергораспределения на показания сборок блоков детектирования, расположенных вне реактора, и определяемый по показаниям сборок блоков детектирования, размещенных внутри реактора, и аксиальной весовой функции сборок блоков детектирования, расположенных вне ректора;

А - нормировочный коэффициент, характеризующий перевод откорректированного значения мощности по показаниям сборок блоков детектирования, расположенных вне реактора, из машинного представления в формат соответствующей размерности.

Также предлагается откорректированное значение мощности реактора в конкретный момент времени по показаниям сборок блоков детектирования, расположенных вне реактора, определять, как усредненное значение корректированных значений мощностей, определяемых по показаниям каждого блока детектирования данной сборки с учетом показаний сборок блоков детектирования, размещенных внутри реактора.

Использование информации от ДПЗ СВРК и аксиальных весовых функций внереакторных БДПН позволяет повысить точность корректировки за счет более строгого учета аксиальной формы энергораспределения.

Заявленное изобретение поясняется чертежами.

На фиг. 1 представлена схема размещения внутриреакторных и внереакторных сборок детектирования, на фиг. 2 - блок-схема устройства корректировки погрешности показаний мощности, на фиг. 3 - график отклонения корректированного значения мощности реактора по результатам конкретного примера применения предлагаемого способа, на фиг. 4 - график отклонения от эталонной мощности реактора по результатам конкретного примера применения предлагаемого способа.

Предлагаемый способ осуществляется следующим образом.

Измеряют показания плотности нейтронного потока внутри активной зоны корпуса реактора. Также измеряют плотность нейтронного потока в каждый момент времени с помощью блоков детектирования, равномерно размещенных по периметру и высоте корпуса реактора. Дополнительно измеряют плотность нейтронного потока в каждый момент времени с помощью попарно размещенных по периферии корпуса реактора напротив друг друга не менее двух сборок детекторов, равномерно размещенных по высоте активной зоны реактора. Измеренные значения плотности нейтронного потока вне корпуса реактора корректируют в зависимости от показаний плотности внутри активной зоны, и корректировку погрешности показаний мощности ядерного реактора вычисляют по формуле: P(t) = А * Kr(t) * Kz(t) * D(t), где где P(t) - откорректированное значение мощности реактора в конкретный момент времени по показаниям сборки блоков детектирования, расположенной вне реактора; D - показание сборок блоков детектирования в конкретный момент времени, расположенных вне реактора; Kr - поправочный коэффициент, учитывающий влияние изменения радиально-азимутальной формы энергораспределения на показания сборок блоков детектирования, расположенных вне реактора, и определяемый по показаниям сборок блоков детектирования, размещенных внутри реактора; Kz - поправочный коэффициент, учитывающий влияние изменения аксиального энергораспределения на показания сборок блоков детектирования, расположенных вне реактора, и определяемый по показаниям сборок блоков детектирования, размещенных внутри реактора, и аксиальной весовой функции сборок блоков детектирования, расположенных вне ректора; А - нормировочный коэффициент, характеризующий перевод откорректированного значения мощности по показаниям сборок блоков детектирования, расположенных вне реактора, из машинного представления в формат соответствующей размерности.

После чего осуществляют корректировку определенного с погрешностью с помощью аппаратуры контроля нейтронного потока показания мощности ядерного реактора.

Также возможно определение откорректированного значения мощности реактора в конкретный момент времени по показаниям сборок блоков детектирования, расположенных вне реактора, как усредненного значения корректированных значений мощностей, определяемых по показаниям каждого блока детектирования данной сборки с учетом показаний блоков детектирования, размещенных внутри реактора.

Предлагаемое техническое решение - способ корректировки погрешности показаний мощности ядерного реактора, поясняется конкретным исполнением, описанным ниже, однако, приведенный пример не является единственно возможным, но наглядно демонстрирует возможность достижения данной совокупностью существенных признаков заявленного технического результата.

В каналах 1 оболочки биологической защиты 2 корпуса 3 реактора равномерно размещены по периметру внереакторные сборки 4 блоков детектирования, состоящие не менее, чем из трех блоков детектирования, равномерно размещенных по высоте активной зоны 5 реактора.

По периферии корпуса 3 реактора попарно размещены напротив друг друга не менее двух внутриреакторных сборок 6 блоков детектирования, состоящие из не менее, чем семи блоков детектирования, равномерно размещенных по высоте активной зоны 5 реактора.

Информация с внереакторных сборок 4 блоков детектирования поступает в АКНП 7, а информация с внутриреакторных сборок 6 блоков детектирования поступает в СВРК 8. Между АКНП 7 и СВРК 8 размещено устройство 9 накопления и обработки информации, снабженное микроконтроллером 10, и предусилитель 11. Благодаря микроконтроллеру 10 достигается коррекция мощности АКНП 7 от формы энергораспределения по показаниям внутриреакторных сборок 6 блоков детектирования, что позволяет повысить точность определения мощности реакторной установки за счет учета показаний внутриреакторных сборок 6 блоков детектирования при изменении формы энергораспределения в активной зоне 5 реактора.

Путем включения устройства 9 накопления и обработки информации осуществляют запитывание микроконтроллера 10, предусилителя 11 и внереакторных сборок 4 блоков детектирования.

С помощью внереакторных сборок 4 блоков детектирования осуществляют измерение плотности нейтронного потока в каналах 1, излучаемых тепловыделяющими сборками 12, и последующую передачу измеренных значений в предусилитель 11 в виде токовых сигналов.

С помощью предусилителя 11 осуществляют усиление входного сигнала и затем передают его в устройство 9 накопления и обработки информации в виде частотного сигнала. Далее, по последовательному интерфейсу CAN осуществляют передачу принятой информации в микроконтроллер 10.

Далее с помощью внутриреакторных сборок 6 блоков детектирования осуществляют измерение плотности нейтронного потока внутри активной зоны 5 и передают измеренные значения в программно-технический комплекс защит 13 СВРК 8 и далее по интерфейсу RS-485 в устройство 9 накопления и обработки информации. Далее, по последовательному интерфейсу CAN осуществляют передачу принятой информации в микроконтроллер 10. Аксиальные весовые функции внереакторных сборок 4 блоков детектирования вводят в память АКНП 7 в табличной форме перед началом работы.

При этом с помощью устройства 9 накопления и обработки информации осуществляют прием значений температуры холодной нитки (от термпосопротивления/термопары). Далее, по последовательному интерфейсу CAN осуществляют передачу принятой информации в микроконтроллер 10.

После получения всех входных данных с помощью микроконтроллера 10 вычисляют корректированное значение мощности реактора по указанным ниже формулам и осуществляют корректировку определенного с помощью АКНП 7 показания мощности ядерного реактора.

Особенностью формирования показаний внереакторных сборок 4 блоков детектирования является то, что основной вклад в их показания дает энерговыделение в ближайшей к каналу 1 тепловыделяющей сборке 12.

Учет нарушения пропорциональности показаний внереакторных сборок 4 блоков детектирования значению мощности осуществляют по следующему алгоритму:

Для каждого канала 1 АКНП 7 выполняют следующую последовательность вычислений.

Вычисляют сумму показаний внутриреакторных сборок 6 блоков детектирования:

где dpz(t)j,i - показание блока детектирования, расположенного в i-ой внутриреакторной сборке 6 в j-ом слое;

NKNI - число внутриреакторных сборок 6 блоков детектирования в активной зоне; NZ - число блоков детектирования в одной внутриреакторной сборке 6 (число блоков детектирования внутриреакторной сборки 6 по высоте активной зоны равно семи).

Вычисляют в слоях сумму показаний внутриреакторных сборок 6 блоков детектирования, ближайших к рассматриваемому каналу 1 с внереакторной сборкой 4 блоков детектирования:

где суммирование ведут по номерам KN(k) внутриреакторных сборок 6 блоков детектирования, расположенных в периферийных слоях тепловыделяющей сборки 12 активной зоны 5, ближайших к каналу 1.

Вычисляют сумму показаний внутриреакторных сборок 6 блоков детектирования, ближайших к рассматриваемому k-ому каналу 1 с внереакторной сборкой 4 блоков детектирования:

Вычисляют нормированное высотное распределение показаний внутриреакторных сборок 6 блоков детектирования:

Вычисляют поправочный коэффициент Kr(t):

Затем вычисляют поправочный коэффициент Kz(t):

где S (j) - значение аксиальной весовой функции внереакторной сборки 4 блоков детектирования.

Вычисляют мощность Pn(t) по показаниям n-ого блока детектирования внутриреакторной сборки 6 в канале 1 (нижнем, верхнем и среднем):

Коэффициент А для каждого блока детектирования внереакторной сборки 4 определяют при настройке АКНП 7 в процессе пуско-наладочных испытаний в момент t=0 по формуле:

Для непрерывного ведения корректировки мощности реактора используют компьютер в режиме on-line для проведения вычислений по приведенному выше алгоритму. По показаниям внутриреакторных сборок 6 блоков детектирования в соответствии с циклами обработки информации проводят вычисления по формулам 1-3 приведенного выше алгоритма.

Для каждого блока детектирования внереакторной сборки 4 проводят вычисления по формулам 4-7 из приведенного выше алгоритма. В результате вычислений получают значения мощности по показаниям каждого блока детектирования внереакторной сборки 4.

Для каждого канала 1 вычисляют корректированное значение мощности как линейную комбинацию значений мощностей по каждому блоку детектирования внереакторной сборки 4 канала 1, затем определяют общее корректированное значение мощности реактора и осуществляют корректировку определенного с помощью АКНП 7 показания мощности ядерного реактора.

Осуществление предлагаемого способа корректировки погрешности показаний мощности ядерного реактора позволяет повысить точность определения мощности реакторной установки как в маневренных режимах работы реактора, так и в других нестационарных режимах за счет получаемой информации от СВРК в режиме on-line.

Похожие патенты RU2771891C1

название год авторы номер документа
СПОСОБ ЗАЩИТЫ АКТИВНОЙ ЗОНЫ РЕАКТОРА ВВЭР ПО ПРЕВЫШЕНИЮ МОЩНОСТИ И СКОРОСТИ ИЗМЕНЕНИЯ МОЩНОСТИ РЕАКТОРА С ИСПОЛЬЗОВАНИЕМ ПОКАЗАНИЙ ФОНОВЫХ ВНУТРИРЕАКТОРНЫХ ДЕТЕКТОРОВ 2011
  • Мусихин Александр Михайлович
  • Курченков Александр Юрьевич
RU2458415C1
СИСТЕМА КОНТРОЛЯ НЕЙТРОННОГО ПОТОКА ЯДЕРНОГО РЕАКТОРА 2006
  • Алпатов Анатолий Михайлович
  • Гусаров Анатолий Майорович
  • Камышан Александр Николаевич
  • Лужнов Александр Модестович
  • Соколов Игорь Викторович
  • Стефаницкая Людмила Олеговна
RU2310248C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГОВЫДЕЛЕНИЯ В АКТИВНОЙ ЗОНЕ ПО ПОКАЗАНИЯМ НЕЙТРОННЫХ ДЕТЕКТОРОВ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ РЕАКТОРА ТИПА ВВЭР 2010
  • Курченков Александр Юрьевич
  • Калинушкин Андрей Евгеньевич
  • Митин Валентин Иванович
RU2451348C2
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО УЧЕТА ПРОСТРАНСТВЕННОГО ЭФФЕКТА ПРИ ИЗМЕРЕНИИ ЭФФЕКТИВНОСТИ ПОГЛОТИТЕЛЕЙ В АКТИВНОЙ ЗОНЕ КРИТИЧЕСКОГО ЯДЕРНОГО РЕАКТОРА 2002
  • Самонин В.Ю.
  • Анненков В.Г.
RU2224304C2
СПОСОБ УПРАВЛЕНИЯ ЯДЕРНЫМ РЕАКТОРОМ 2011
  • Юркевич Геннадий Петрович
  • Юркевич Игорь Юрьевич
RU2470392C1
ИСПОЛНИТЕЛЬНЫЙ ОРГАН СИСТЕМЫ УПРАВЛЕНИЯ И ЗАЩИТЫ ЯДЕРНОГО РЕАКТОРА 2000
  • Русинов Владимир Федотович
  • Быстров Ю.П.
RU2188469C2
Способ определения коэффициентов реактивности по температуре топлива и плотности теплоносителя для области малых уровней мощности для ядерных реакторов большой мощности типа водо-водяных энергетических реакторов 2022
  • Пинегин Анатолий Александрович
  • Цыганов Сергей Вячеславович
RU2786517C1
СПОСОБ УПРАВЛЕНИЯ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ С РЕАКТОРОМ ВОДЯНОГО ТИПА ПРИ ИЗМЕНЕНИИ МОЩНОСТИ РЕАКТОРА ИЛИ ВНЕШНЕЙ НАГРУЗКИ 2011
  • Максимов Максим Витальевич
  • Пелых Сергей Николаевич
  • Баскаков Владимир Евгеньевич
  • Цисельская Таисия Александровна
RU2470391C1
СИСТЕМА ВНУТРИРЕАКТОРНОГО КОНТРОЛЯ И ЗАЩИТЫ АКТИВНОЙ ЗОНЫ РЕАКТОРОВ ВВЭР 2010
  • Калинушкин Андрей Евгеньевич
  • Семченков Юрий Михайлович
  • Филатов Владимир Павлович
  • Конин Дмитрий Иванович
  • Мусихин Александр Михайлович
  • Ковель Александр Иванович
  • Мильто Надежда Валерьевна
  • Мильто Владимир Александрович
  • Алексеев Артем Николаевич
  • Голованов Михаил Николаевич
RU2435238C1
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО УЧЕТА ПРОСТРАНСТВЕННОГО ЭФФЕКТА В АКТИВНОЙ ЗОНЕ КРИТИЧЕСКОГО ЯДЕРНОГО РЕАКТОРА 2005
  • Самонин Вадим Юрьевич
  • Анненков Владимир Георгиевич
RU2303298C2

Иллюстрации к изобретению RU 2 771 891 C1

Реферат патента 2022 года Способ корректировки погрешности показаний мощности ядерного реактора

Изобретение относится к ядерной энергетике, а именно к средству контроля нейтронного потока для обеспечения контроля, управления и защиты корпусных ядерных реакторов. Изобретение может быть использовано для коррекции погрешности показаний мощности ядерного реактора и аппаратуры контроля нейтронного потока на основании показаний детекторов прямой зарядки системы внутриреакторного контроля. Определение скорректированного значения мощности ядерного реактора на основе коррекции мощности аппаратуры контроля нейтронного потока по показаниям внереакторных датчиков нейтронного потока, с учетом их зависимости от формы энергораспределения в активной зоне, полученной от внутриреакторных детекторов системы внутриреакторного контроля. Техническим результатом является обеспечение безопасности и надежности эксплуатации ядерного реактора за счет обеспечения своевременного и точного определения корректировки погрешности показаний мощности ядерного реактора при любых режимах его работы. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 771 891 C1

1. Способ корректировки погрешности показаний мощности ядерного реактора, заключающийся в том, что плотность нейтронного потока в каждый момент времени измеряют с помощью сборок блоков детектирования, размещенных вне корпуса реактора, и по полученным результатам измерений определяют скорректированное значение мощности ядерного реактора с учетом поправочных коэффициентов, отличающийся тем, что плотность нейтронного потока измеряют вне корпуса реактора по показаниям сборок блоков детектирования, равномерно размещенных по периметру и высоте корпуса реактора, дополнительно измеряют плотность нейтронного потока в каждый момент времени с помощью попарно размещенных по периферии корпуса реактора напротив друг друга не менее двух сборок детектирования, равномерно размещенных по высоте активной зоны реактора, измеренные значения плотности нейтронного потока вне корпуса реактора корректируют в зависимости от показаний плотности внутри активной зоны, а корректировку погрешности показаний мощности ядерного реактора вычисляют по формуле

P(t) = А * Kr(t) * Kz(t) * D(t),

где P(t) - откорректированное значение мощности реактора в конкретный момент времени по показаниям блока детектирования, расположенного вне реактора,

D - показание блока детектирования в конкретный момент времени, расположенного вне реактора,

Kr - поправочный коэффициент, учитывающий влияние изменения радиально-азимутальной формы энергораспределения на показания блока детектирования, расположенного вне реактора, и определяемый по показаниям блоков детектирования, размещенных внутри реактора,

Kz - поправочный коэффициент, учитывающий влияние изменения аксиального энергораспределения на показания блоков детектирования, расположенных вне реактора, и определяемый по показаниям блоков детектирования, размещенных внутри реактора, и аксиальной весовой функции блока детектирования, расположенного вне ректора,

А - нормировочный коэффициент, характеризующий перевод откорректированного значения мощности по показаниям блока детектирования, расположенного вне реактора, из машинного представления в формат соответствующей размерности.

2. Способ корректировки погрешности показаний мощности ядерного реактора по п. 1, отличающийся тем, что откорректированное значение мощности реактора в конкретный момент времени по показаниям сборок блоков детектирования, расположенных вне реактора, определяют как усредненное значение корректированных значений мощностей, определяемых по показаниям каждого блока детектирования данной сборки с учетом показаний блоков детектирования, размещенных внутри реактора.

Документы, цитированные в отчете о поиске Патент 2022 года RU2771891C1

СИСТЕМА КОНТРОЛЯ НЕЙТРОННОГО ПОТОКА ЯДЕРНОГО РЕАКТОРА 2006
  • Алпатов Анатолий Михайлович
  • Гусаров Анатолий Майорович
  • Камышан Александр Николаевич
  • Лужнов Александр Модестович
  • Соколов Игорь Викторович
  • Стефаницкая Людмила Олеговна
RU2310248C1
БОРОВИК Г.Ф
и др
Комплекс аппаратуры контроля нейтронного потока системы управления и защиты водо-водяных энергетических реакторов АЭС
- Атомная энергия, т.54, вып.1
- М.: Энергоатомиздат, 1983, с.27-36
СИСТЕМА МОНИТОРИРОВАНИЯ НЕЙТРОННОГО ПОТОКА НА КОРПУС РЕАКТОРА 1993
  • Новоселов В.А.
  • Гончар В.Н.
  • Бирюков Г.И.
  • Афров А.М.
  • Зарицкий С.М.
RU2073921C1
УСТРОЙСТВО ИЗМЕРЕНИЯ НЕЙТРОННОГО ПОТОКА 2003
  • Гутов С.А.
RU2240609C1
US 4268354 A1, 19.05.1981
СПОСОБ ДИАГНОСТИКИ ГАЛЬВАНОЗА В ПОЛОСТИ РТА 2002
  • Кириллова Л.А.
  • Кириллов С.К.
  • Кузьменков А.Н.
  • Стунжас Н.М.
RU2218078C1
CN

RU 2 771 891 C1

Авторы

Сергеев Иван Алексеевич

Коцарев Александр Витальевич

Морозов Валерий Валентинович

Стриковский Владимир Игоревич

Даты

2022-05-13Публикация

2021-08-05Подача