Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойного экструдирования (3D-печати) бетонной смеси на основе портландцемента, песка, тонкомолотого пуццоланового компонента, суперпластификатора и метилсиликоната натрия.
Известна сырьевая смесь на основе цемента для строительной 3D-печати, включающая сульфоалюминатный цемент – 150-400 кг, золу – 0-250 кг, песок с диаметром частиц 0,075-5 мм, полипропиленовую фибру с длиной 3-6 мм, суперпластификатор PCE производства Shandong Hongyi Technology Co., Ltd – 1,5-2,5 % от массы цемента, замедлитель схватывания тетраборат натрия и винная кислота в соотношении 1:(1-1,5) – 0,01-0,2 % от массы цемента, при этом 10-минутная осадка предлагаемого материала на основе цемента составляет 90-110 мм, начало схватывания составляет 15-80 мин, конец схватывания составляет 30-100 мин [1]. Недостатками данного изобретения являются наличие большого числа компонентов смеси, повышенный расход компонентов смеси и увеличение ее стоимости, вызванное применением быстротвердеющего сульфоалюминатного цемента и замедлителя схватывания.
Известна высокотиксотропная сырьевая смесь для строительной 3D-печати, включающая в себя, мас.%: специальный тиксотропный агент 1,0-3,0, цемент 35-40, суперпластификатор на основе эфиров поликарбоксилата 0,1-0,4, полипропиленовое волокно 0,1-0,4, воду 12,5-14,5, песок – остальное [2]. Недостатками данного изобретения являются снижение физико-механических характеристик композита при температуре свыше 140 0C, вызванное плавлением полипропиленового волокна.
Известен модифицированный полимерцементный композиционный материал для 3D-печати, включающий, мас.%: портландцемент 24,37-34,16, поливинилацетатная дисперсия 2,44-2,56, песок 50,74-61,38, жидкое стекло 1,70-2,44, фиброволокно полипропиленовое 0,02-0,03, флороглюцинфурфурольный модификатор 0,05-0,07, вода – остальное [3]. Недостатками данного изобретения являются невысокие сроки начала схватывания – до 45-70 мин, что вызывает затруднение транспортирования сырьевой смеси с завода на строительную площадку, низкие показатели прочности на сжатие и изгиб в возрасте 28 сут, повышенное водопоглощение.
Наиболее близким решением к предлагаемому изобретению является двухфзная смесь на основе цемента для композитов в технологии строительной 3D-печати, фаза 1 которой содержит компоненты в следующем массовом соотношении твердой фазы, %: портландцемент 44,1-44,5, песок 55,14-55,4, камедь ксантановая 0,08-0,1, тетракалий пирофосфат технический 0,08-0,1, полипропиленовая фибра 0,2-0,3; фаза 2 содержит компоненты в следующем массовом соотношении жидкой фазы, %: суперпластификатор 4,1-4,6, вода 95,4-95,9 [4].
Недостатками данного изобретения являются повышенный расход портландцемента и суперпластификатора (1,2-1,4% от массы портландцемента), низкая формоустойчивость напечатанных слоев из сырьевой смеси, высокие усадочные деформации затвердевшего композита вследствие повышенного расхода портландцемента и применения песка, принадлежащего к группе «очень мелкий» (согласно ГОСТ 8736-2014), высокое водопоглощение, низкие показатели предела прочности при изгибе затвердевшего композита, снижение физико-механических характеристик композита при температуре свыше 140 °C, вызванное плавлением полипропиленового волокна, использование в качестве модификаторов вязкости тетракалия пирофосфата и камеди ксантановой не предназначенной для использования в качестве добавок для бетонов и растворов (по ГОСТ 24211-2008). Также недостатком изобретения является отсутствие данных о влажности компонентов сырьевой смеси, влияющие на реологические и физико-механические свойства композитов, а также отсутствие данных об осуществлении данного изобретения на 3D-принтере, реализующем метод послойного экструдирования и качестве получаемых изделий. Кроме того, недостатком является используемый в изобретении способ подготовки образцов, заключающийся в их изготовлении в формах 70х70х70 мм, 70х70х280 мм, в то время как технология строительной 3D-печати исключает применение форм, что при приводит к изменению поровой структуры композита и искажению получения достоверных результатов физико-механических свойств (прочность на сжатие и растяжение, плотность, водопоглощение и др.).
Задачей предлагаемого изобретения является снижение расхода портландцемента, суперпластификатора в бетонной смеси для строительной 3D-печати, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм).
Техническим результатом предлагаемого решения является снижение расхода портландцемента и суперпластификатора в бетонной смеси, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм).
Поставленная задача достигается тем, что бетонная смесь на основе цемента для строительной 3D-печати, включающая портландцемент, песок, суперпластификатор и воду, отличается тем, что портландцемент содержит трехкальциевый силикат 68,1 %, трехкальциевый алюминат 7,2 %, в качестве суперпластификатора используют MasterRheobuild 183на основе нафталинсульфонатов, в качестве песка используют кварцевый песок с модулем крупности 2,2-2,4, влажностью 1-2 %,и дополнительно бетонная смесь содержит тонкомолотый пуццолановый компонент – бинарную смесь из диатомита со степенью помола не менее 1400 м2/кг и гидравлической активностью не менее 1500 мг/г и метакаолина со степенью помола не менее 2000 м2/кг и гидравлической активностью не менее 1200 мг/г и метилсиликонат натрия ГКЖ-11Н при следующем содержании компонентов, мас.%:
Песок
Суперпластификатор «MasterRheobuild 183»
Тонкомолотый пуццолановый компонент – диатомит
Тонкомолотый пуццолановый компонент – метакаолин
Метилсиликонат натрия «ГКЖ-11Н»
Вода
59,4-63,0
0,20-0,22
2,0-2,2
2,0-2,2
0,010-0,011
12,790-13,969
Для изготовления бетонной смеси на основе цемента для строительной 3D-печати использовали следующие материалы:
Портландцемент ЦЕМ I 42,5Н производства ООО «Азия Цемент» (ГОСТ 31108-2016) со следующим минералогическим составом: С3S – 68,1 %, С2S – 9,4 %, С3А – 7,2 %, С4AF – 11 %;
Кварцевый песок Камско-Устьинского месторождения Республики Татарстан с модулем крупности 2,2-2,4, влажностью 1-2 % (ГОСТ 8736-2014). Для приготовления образцов использовали песок с модулем крупности 2,3, с влажностью 1,5%;
Суперпластификатор на основе нафталинсульфонатов, «MasterRheobuild 183» производства ООО «BASF Строительные системы», представляющий собой жидкость темно-коричневого цвета без содержания хлоридов, плотностью при 20 0C 1,12 г/см3, pH – 5;
Тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг производства ООО «Диамикс» (СТО 23998461-020-2018). Для приготовления образцов использовали диатомит с гидравлической активностью 1553,7 мг/г, степенью помола 1443 м2/кг;
Тонкомолотый пуццолановый компонент – метакаолин с гидравлической активностью не менее 1200 мг/г, степенью помола не менее 2000 м2/кг (ТУ 5729-098-12615988-2013). Для приготовления образцов использовали метакаолин с гидравлической активностью 1232,7 мг/г, степенью помола 2068 м2/кг;
Метилсиликоната натрия «ГКЖ-11Н» производства ПАО «Химпром», представляющий собой жидкость темно-коричневого цвета плотностью 1,15 г/см3 при 20 °C;
Водопроводная питьевая вода, удовлетворяющая требованиям ГОСТ 23732.
Предлагаемое изобретение осуществляется следующим образом: в работающий смеситель загружают заранее отдозированные сухие компоненты бетонной смеси – портландцемент, песок, диатомит, метакаолин и производят их перемешивание до получения однородной массы. Затем производят дозирование по массе воды, суперпластификатора «MasterRheobuild 183», метилсиликоната натрия, производят их перемешивание до получения однородного раствора и постепенно добавляют его к тщательно перемешанным сухим компонентам, осуществляя перемешивание смеси до получения однородной массы с подвижностью Пк 2 (по ГОСТ 28013-98) при глубине погружения эталонного конуса 7-8 см. На следующем этапе производят подготовку 3D-принтера: внутреннюю поверхность съемного накопительного бункера смачивают водопроводной питьевой водой или разделительной смазкой. Далее заполняют съемный накопительный бункер строительного 3D-принтера приготовленной бетонной смесью и осуществляют пробное экструдирование до достижения однородности получаемого экструдата. Затем осуществляют формование бетонной смеси методом послойного экструдирования (3D-печати) на строительном 3D-принтере (например, «АМТ» S-6044 компании ООО «СПЕЦАВИА») в соответствии с заранее подготовленной трехмерной цифровой моделью. Трехмерная цифровая модель образцов представляет собой полосу длиной 40 см, высотой одного слоя 20 мм. Печать бетонной смеси производят при следующих регулируемых параметрах печати, задаваемых в программном комплексе «Mach3» (Artsoft founder Art Fenerty): скорость вращения шпинделя составляет 3000-5000 ед., скорость подачи – 4000-6000 ед/мин.
Формоустойчивость напечатанных слоев из бетонной смеси оценивалась по способности смеси сохранять положение в пространстве под воздействием технологических факторов, а именно по максимальной высоте печатаемого образца без технологических перерывов до достижения им критического состояния – потери устойчивости в целом, характеризующаяся его опрокидыванием или потерей устойчивости формы образца со смещением напечатанных слоев.
Также были проведены испытания образцов по прототипу с использованием портландцемента ЦЕМ I 42,5Н по ГОСТ 31108-2016, песок с модулем крупности меньше или равным 1,25 по ГОСТ 8736-2014, камеди ксантановой с содержанием (C35Н49О29)n не менее 91%, тетракалия пирофосфата технического с содержанием К4Р2О5 не менее 98%, полипропиленовой фибры длиной 12 мм, суперпластификатора на основе поликарбоксилатных эфиров, воды.
Через 28 суток нормального твердения производили подготовку образцов для испытаний, сформованных методом послойного экструдирования (3D-печати), путем их распила на призмы размерами 40х40х160 мм. Водопоглощение затвердевшего композита определяли по ГОСТ 12730.3-78 «Бетоны. Метод определения водопоглощения». Предел прочности при изгибе затвердевшего композита определяли на образцах-балочках размерами 40х40х160 мм по ГОСТ 5802-86. «Растворы строительные. Методы испытаний» с использованием испытательной машины МИИ-100. Усадочные деформации оценивались по наличию образования на затвердевших композитах усадочных трещин, наличие дефектов виде разрывов напечатанных слоев из бетонной смеси производилось визуально-инструментальным методом с использованием измерительной металлической линейки по ГОСТ 427-75 и измерительной лупы с подсветкой по ГОСТ 25706-83.
Составы бетонных смесей на основе цемента для строительной 3D-печати приведены в таблице 1, физико-механические показатели для составов приведены в таблице 2.
Таблица 1
Таблица 2
Из приведенных данных следует, что максимальные показатели формоустойчивости напечатанных слоев из бетонной смеси, предела прочности при изгибе затвердевших композитов достигаются при содержании в составе бетонной смеси портландцемента – 20,0-22,0 % от общей массы композиции, песка – 59,4-63,0 %, суперпластификатора «MasterRheobuild 183» – 0,20-0,22 %, тонкомолотого пуццоланового компонента – диатомита – 2,0-2,2 %, тонкомолотого пуццоланового компонента – метакаолина – 2,0-2,2 %, метилсиликоната натрия «ГКЖ-11Н» – 0,010-0,011 %, воды – 12,790-13,969 %. При введении портландцемента, суперпластификатора «MasterRheobuild 183», тонкомолотого пуццоланового компонента – диатомита, тонкомолотого пуццоланового компонента – метакаолина, метилсиликоната натрия «ГКЖ-11Н», в количестве меньше указанных в таблице 1 (состав 5), наблюдается снижение показателей исследуемых свойств по сравнению с заявляемыми пределами. При их введении, в количестве больше указанных в таблице 1 (состав 7), исследуемые свойства композиций, напечатанных на 3D-принтере, снижаются или увеличиваются незначительно. В составах бетонных смесей на основе цемента для строительной 3D-печати (составы 1-3, 5-8) отсутствуют усадочные трещины, в составах 4-8 отсутствуют дефекты в виде разрывов.
Бетонная смесь на основе цемента для строительной 3D-печати, полученная согласно предлагаемому изобретению, обладает пониженным расходом портландцемента и суперпластификатора, повышенной формоустойчивостью и отсутствием дефектов в виде разрывов напечатанных слоев из бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, изделия – высокими прочностными характеристиками при изгибе отсутствием усадочных трещин, низким водопоглощением.
Применение песка средней крупности с модулем крупности 2,2-2,4 в сочетании с уменьшенным цементно-песчаным отношением позволяет снизить развитие усадочных деформаций композита, сформованного методом послойного экструдирования (3D-печати). Кроме того, уменьшенное цементно-песчаное отношение позволяет снизить расход портландцемента в бетонной смеси при обеспечении формуемости на 3D-принтере и физико-механических показателей.
Применение суперпластификатора «MasterRheobuild 183» на основе нафталинсульфонатов в количестве 0,20-0,22 мас.% позволяет сократить количество воды затворения, повысить плотность смеси и физико-механические характеристики затвердевшего композита при одновременном обеспечении оптимальных реотехнологических свойств бетонной смеси для ее послойного экструдирования, обеспечивающих также высокую формоустойчивость напечатанных слоев из бетонной меси.
Введение тонкомолотового пуццоланового компонента – диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г позволяет улучшить формоустойчивость напечатанных слоев из бетонной смеси за счет улучшения ее однородности, связности и пластичности при послойном экструдировании (3D-печати).
Введение тонкомолотового пуццоланового компонента – метакаолина со степенью помола не менее 2000 м2/кг, гидравлической активностью не менее 1200 мг/г позволяет повысить предел прочности при изгибе затвердевших композитов за счет взаимодействия с портландитом, образующимся при гидратации портландцемента, и увеличении количества новообразований из низкоосновных гидросиликатов кальция.
Применение бинарной смеси диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г и метакаолина со степенью помола не менее 2000 м2/кг, гидравлической активностью не менее 1200 мг/г позволяет достичь синергетического эффекта, выражающегося в повышении формоустойчивости напечатанных слоев из бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, за счет улучшения ее однородности, связности и пластичности при послойном экструдировании (3D-печати), что позволяет получать изделия на 3D-принтере без дефектов виде разрывов, повышении предела прочности при изгибе затвердевшего композита, напечатанных на 3D-принтере.
Применение метилсиликоната натрия «ГКЖ-11Н» в количестве 0,010-0,011 мас.% позволяет снизить водопоглощение затвердевших композитов, напечатанных на 3D-принтере (без использования форм), за счет придания стенкам капилляров и пор водоотталкивающей способности.
Совместное использование суперпластификатора «MasterRheobuild 183» в количестве 0,20-0,22 мас.% , бинарной смеси диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г и метакаолина со степенью помола не менее 2000 м2/кг, гидравлической активностью не менее 1200 мг/г в количестве 4,0-4,4 мас.% и метилсиликоната натрия «ГКЖ-11Н» в количестве 0,010-0,011 мас.% способствует приданию бетонной смеси оптимальных реотехнологических свойств, повышению формоустойчивости напечатанных слоев из бетонной смеси, физико-механических показателей (повышение предела прочности при изгибе, снижение водопоглощения) затвердевших композитов, напечатанных на 3D-принтере.
Таким образом, предлагаемое решение позволяет получить бетонную смесь на основе цемента для строительной 3D-печати методом послойного экструдирования с пониженным расходом портландцемента и суперпластификатора, обладающую высокой формоустойчивостью, и изделия на ее основе с высокими прочностными характеристиками при изгибе, низким водопоглощением, пониженными усадочными деформациями и отсутствием на них дефектов.
Источники информации:
1. Патент CN 105753404A, B33Y70 / 00, Cement-based material used for building 3D (three-dimensional) printing, заяв. 13.02.2016, опубл. 13.07.2016.
2. Патент CN 108715531A, C04B28/02, A kind of high thixotropic 3D printing concrete and preparation method thereof, заяв. 12.06.2018, опубл. 28.08.2020.
3. Патент, RU 2 661 970, С04В 28/04, C04В 14/02, С04В 22/08, С04В 26/00, С04В2111/20, С04В2111/343, Модифицированный полимерцементный композиционный материал для 3D-печати, Полуэктова В.А., Шаповалов Н.А., Черников Р.О., Евтушенко Е.И., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет»., заяв. 31.07.2017, опубл. 23.07.2018, бюл. №21.
4. Патент, RU 2 729 086, С04В 28/04, Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати, Славчева Г.С., Аратмонова О.В., Шведова М.А., Бритвина Е.А., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»., заяв. 21.10.2019, опубл. 04.08.2020, бюл. №22.
название | год | авторы | номер документа |
---|---|---|---|
СЫРЬЕВАЯ СМЕСЬ НА ОСНОВЕ ЦЕМЕНТА ДЛЯ СТРОИТЕЛЬНОЙ 3D-ПЕЧАТИ | 2021 |
|
RU2780276C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ СТРОИТЕЛЬНОЙ 3D-ПЕЧАТИ В ТЕХНОЛОГИИ АДДИТИВНОГО ПРОИЗВОДСТВА | 2021 |
|
RU2781201C1 |
МОДИФИЦИРОВАННАЯ БЕТОННАЯ СМЕСЬ ДЛЯ СТРОИТЕЛЬНОЙ 3D-ПЕЧАТИ | 2021 |
|
RU2775032C1 |
БЕТОННАЯ СМЕСЬ ДЛЯ ЭКСТРУЗИИ НА 3D-ПРИНТЕРЕ | 2021 |
|
RU2777220C1 |
СТРОИТЕЛЬНАЯ СМЕСЬ ДЛЯ 3D-ПЕЧАТИ | 2021 |
|
RU2773913C1 |
МОДИФИЦИРОВАННАЯ СТРОИТЕЛЬНАЯ СМЕСЬ ДЛЯ 3D-ПРИНТЕРА | 2021 |
|
RU2781303C1 |
Гипсоцементно-пуццолановая сырьевая смесь для экструзии на 3D-принтере | 2023 |
|
RU2821079C1 |
БЕТОННАЯ СМЕСЬ ДЛЯ ПОСЛОЙНОГО ЭКСТРУДИРОВАНИЯ (3D-ПЕЧАТИ) | 2021 |
|
RU2784503C1 |
МОДИФИЦИРОВАННАЯ СЫРЬЕВАЯ СМЕСЬ ДЛЯ СТРОИТЕЛЬНОЙ 3D-ПЕЧАТИ | 2021 |
|
RU2781199C1 |
Гипсоцементно-пуццолановая модифицированная бетонная смесь для экструзии на 3D-принтере | 2023 |
|
RU2817928C1 |
Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойного экструдирования (3D-печати) бетонной смеси на основе портландцемента, песка, тонкомолотого пуццоланового компонента, суперпластификатора и метилсиликоната натрия. Техническим результатом является снижение расхода портландцемента и суперпластификатора в бетонной смеси, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм). Бетонная смесь на основе цемента для строительной 3D-печати включает портландцемент, песок, суперпластификатор и воду. Портландцемент содержит трехкальциевый силикат 68,1 %, трехкальциевый алюминат 7,2 %, в качестве суперпластификатора используют MasterRheobuild 183 на основе нафталинсульфонатов, в качестве песка используют кварцевый песок с модулем крупности 2,2-2,4, влажностью 1-2 %, и дополнительно бетонная смесь содержит тонкомолотый пуццолановый компонент – бинарную смесь из диатомита со степенью помола не менее 1400 м2/кг и гидравлической активностью не менее 1500 мг/г и метакаолина со степенью помола не менее 2000 м2/кг и гидравлической активностью не менее 1200 мг/г и метилсиликонат натрия ГКЖ-11Н при следующем содержании компонентов, мас.%: портландцемент – 20,0-22,0, песок – 59,4-63,0, суперпластификатор «MasterRheobuild 183» - 0,20-0,22, тонкомолотый пуццолановый компонент – диатомит – 2,0-2,2, тонкомолотый пуццолановый компонент – метакаолин – 2,0-2,2, метилсиликонат натрия «ГКЖ-11Н» - 0,010-0,011, вода – 12,790-13,969. 2 табл.
Бетонная смесь на основе цемента для строительной 3D-печати, включающая портландцемент, песок, суперпластификатор и воду, отличающаяся тем, что портландцемент содержит трехкальциевый силикат 68,1 %, трехкальциевый алюминат 7,2 %, в качестве суперпластификатора используют MasterRheobuild 183 на основе нафталинсульфонатов, в качестве песка используют кварцевый песок с модулем крупности 2,2-2,4, влажностью 1-2 %, и дополнительно бетонная смесь содержит тонкомолотый пуццолановый компонент – бинарную смесь из диатомита со степенью помола не менее 1400 м2/кг и гидравлической активностью не менее 1500 мг/г и метакаолина со степенью помола не менее 2000 м2/кг и гидравлической активностью не менее 1200 мг/г и метилсиликонат натрия ГКЖ-11Н при следующем содержании компонентов, мас.%:
Песок
Суперпластификатор «MasterRheobuild 183»
Тонкомолотый пуццолановый компонент – диатомит
Тонкомолотый пуццолановый компонент – метакаолин
Метилсиликонат натрия «ГКЖ-11Н»
Вода
59,4-63,0
0,20-0,22
2,0-2,2
2,0-2,2
0,010-0,011
12,790-13,969
Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати | 2019 |
|
RU2729086C1 |
МОДИФИЦИРОВАННЫЙ ПОЛИМЕРЦЕМЕНТНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ 3D ПЕЧАТИ | 2017 |
|
RU2661970C1 |
CN 111138100 A, 12.05.2020 | |||
СN 105753404 A, 13.07.2016 | |||
KR 102194848 B1, 23.12.2020 | |||
Л.И | |||
КАСТОРНЫХ Добавки в бетоны и строительные растворы, учебно-справочное пособие, Ростов-на -Дону, Феникс, 2005, с.6-16, 87, 117-130.. |
Авторы
Даты
2022-06-28—Публикация
2021-12-30—Подача