Изобретение относится к области термометрии и может использоваться для измерения температуры среды или объектов. Одним из самых распространённых видов датчиков температуры являются термометры сопротивления (терморезисторы, термосопротивления). Для измерения сопротивления термометра сопротивления используется делитель напряжения опорного источника питания, образованный опорным резистором и термометром сопротивления. Измеряя падение напряжение на термометре сопротивления, а также зная величину опорного напряжения и сопротивление опорного резистора, можно определить величину сопротивления термометра сопротивления, зависящую от температуры, а по известной зависимости сопротивления от температуры, и температуру. Альтернативным способом является питание термометра сопротивления известным током генератора тока. При этом падение напряжения на термометре сопротивления пропорционально его сопротивлению.
При размещении датчиков на объектах контроля их подключение может осуществляться проводниками значительной длины. При этом сопротивление проводников вносит погрешность в измерение сопротивления термометра сопротивления, а, следовательно, и температуры. Известны решения, позволяющие уменьшить или исключить влияние сопротивления проводников на результат измерения. Это применение трёхпроводных и четырёхпроводных подключений термометров сопротивления. [Андрусевич А. Термометры сопротивления: от теории к практике/ А. Андрусевич, А. Губа. // Компоненты и технологии 2011. №7. С. 61-66].
Недостатками подобных решений являются сложные измерительные схемы, совместно со стоимостью трёхпроводных и четырёхпроводных кабелей, существенно удорожающие подключения термометров сопротивления по сравнению с двухпроводным подключением.
Для ослабления влияния на точность измерения температуры разогрева термометров сопротивления протекающим током, они работают при малых величинах токов, что снижает падение напряжения на них и увеличивает влияние шумов, помех и погрешностей электронных узлов на результат измерения. Это приводит к дальнейшему усложнению измерительных цепей, а также применению фильтрации, влекущей за собой снижение быстродействия. Усложнение измерительных цепей также снижает их надёжность.
Перечисленные недостатки обостряются в системах сбора данных.
Известен способ повышения падения напряжения на термометре сопротивления, реализованный устройством [SU 1394062. Устройство для измерения температуры 07.05.1988 г.], в котором при изменении сопротивления термопреобразователя, вследствие изменения температуры контролируемой среды, автоматически изменяется ток питания термопреобразователя (термометра сопротивления) с целью получения максимального уровня сигнала при допустимой мощности рассеивания. Для этого устройство содержит блок стабильных источников тока, в котором каждый источник тока настроен на генерацию заданного фиксированного тока опроса для конкретного диапазона значений сопротивлений термопреобразователя. Вычислительный блок осуществляет компенсацию аддитивной и мультипликативной составляющих погрешности.
Недостатками данного решения является то, что выигрыш в мощности сигнала, получаемого с термометра сопротивления, оказывается небольшим, а сложность устройства резко возрастает, что снижает его надёжность.
Наиболее близким по технической сути к предлагаемому способу является способ существенного повышения уровня сигнала при упрощении устройства и, следовательно, снижения погрешности, реализуемый устройством [RU 2534633 C2. Устройство для измерения температуры среды, 22.03.2013 г.], содержащим источник постоянного напряжения и соединенные входами-выходами аналого-цифровой преобразователь и контроллер, а также n термопреобразователей сопротивления, эталонный резистор, n- канальный коммутатор постоянного напряжения, где n=1, 2, 3, при этом источник постоянного напряжения подключен выходом к n-канальному коммутатору постоянного напряжения, первые выводы n термопреобразователей сопротивления подключены к соответствующим выходам n-канального коммутатора постоянного напряжения, кроме того, вход управления n-канального коммутатора постоянного напряжения подключен к первому управляющему выходу контроллера, при этом источник постоянного напряжения не стабилизирован, а n термопреобразователей сопротивления вторыми выводами соединены последовательно с эталонным резистором с образованием общей электрической цепи для протекания тока опроса, при этом вход управления коммутатора постоянного напряжения подключен к первому управляющему выходу контроллера с возможностью подачи напряжения от источника постоянного напряжения в виде импульсной последовательности, кроме того, введен (n+1)-канальный коммутатор, при этом первые выводы n термопреобразователей сопротивления подключены, кроме того, к n входам (n+1)-канального коммутатора, а вторые выводы n термопреобразователей сопротивления подключены, кроме того, к (n+1) входу канального коммутатора, вход управления которого подключен ко второму управляющему выходу контроллера, а выход (n+1)-канального коммутатора подключен к входу аналого-цифрового преобразователя.
Недостатком этого способа измерения температуры является существенное возрастание погрешности за счёт сопротивления проводов линии, с помощью которой подключается термометр сопротивления и повышенная сложность, обусловленная наличием второго коммутатора с (n+1) входом.
Технической задачей, на решение которой направлен предлагаемый способ, является повышение точности измерения за счёт ослабления влияния сопротивления линий, с помощью которых осуществляется подключение термометров сопротивления, и упрощение устройства.
Задача решается тем, что в способе измерения температуры, заключающемся в поочерёдном питании n термометров сопротивления, шунтированных конденсаторами, через соответствующие линии и общее опорное сопротивление импульсом напряжения со скважностью, при которой средний ток через термометр сопротивления не превышает допустимой величины, а величина ёмкости конденсаторов выбирается такой, чтобы за время действия импульса напряжения его заряд завершился, при этом импульс напряжения завершается отключением опорного резистора от источника питания, сопротивление термометра сопротивления определяется по результатам измерения падения напряжения на опорном резисторе в конце действия импульса напряжения и напряжения на конце линии, подключенном к опорному резистору после отключения опорного резистора от источника питания.
Предлагаемое решение поясняется: фиг. 1 – Структурная схема устройства, реализующего способ измерения температуры.
Для реализации способа предложено устройство многоканального измерения температуры, содержащее микроконтроллер 1, опорный резистор 2, термометры сопротивления 3, шунтированные конденсаторами 4, соединительную линию 5, представленную сопротивлениями её проводов. Выходы 1, 2, 3 микроконтроллера 1 присоединены к первым входам линий 5, а вторые входы линий соединены вместе, и присоединены к первому выводу опорного резистора 2, второй вывод которого присоединён к выходу 4 микроконтроллера 1, при этом оба вывода опорного резистора 2 соединены со входами встроенного в микроконтроллер 1 аналого-цифрового преобразователя 5 и 6, а к выходам линий 5 присоединены термометры сопротивлений 3, шунтированные конденсаторами 4.
Способ осуществляется следующим образом. В начальном состоянии микроконтроллер 1 удерживает выходы 1, 2, 3 в высокоимпедансном состоянии (запрограммированы на ввод), а на выходе 4 устанавливает низкий уровень (логический нуль). При этом ток в цепях термометров сопротивлений отсутствует. На первый вход выбранной линии 5, подаётся низкий уровень напряжения с одного из выходов (1, 2 или 3) микроконтроллера 1, а на вывод 4 микроконтроллера 1 на интервал времени t подаётся высокий уровень напряжения (логическая 1). При подаче импульса напряжения, протекающей в выбранной линии ток, создаёт падение напряжения на термометре сопротивления 3, и заряжает шунтирующий его конденсатор 4. К концу импульса напряжения длительностью t конденсатор 4 заряжается до установившегося значения. Установившееся напряжение меньше напряжения импульса напряжения на величину падения напряжения на выходных сопротивлениях микроконтроллера 1 и сопротивлениях проводов линии. В конце интервала t измеряется напряжение на опорном резисторе 2, присутствующее между входами 5 и 6, встроенного в микроконтроллер 1 аналого-цифрового преобразователя. По завершении интервала t выход 4 микроконтроллера 1 устанавливается в высокоимпедансное состояние (переключается на ввод), а ток в цепи устанавливается равным нулю, и на входе 6 измеряется напряжение, присутствующее на втором входе линии 5, присоединённом к первому выводу опорного резистора 2. Это напряжение равно напряжению на термометре сопротивления 3 шунтированному конденсатором 4. По измеренным напряжениям рассчитывается сопротивление термометра сопротивления, а по нему температура. Затем выходы микроконтроллера переводятся в высокоимпедансное состояние, выдерживается пауза, гарантирующая требуемое значение среднего тока термометра сопротивления, выбирается следующая линия, переводом очередного вывода (из 1-3) в низкий уровень, и процесс измерения повторяется для следующего термометра сопротивления.
Период повторения циклов опроса термометров сопротивления и длительность импульса обеспечивают среднее значение тока, не превышающее допустимого значения. Количество измерительных каналов температуры может быть бóльшим (три канала в устройстве демонстрируют лишь принцип) и ограничивается количеством портов микроконтроллера. При этом для реализации способа измерения температуры, достаточно лишь двух входов аналого-цифрового преобразователя.
Сопротивление выходных каскадов портов может рассматриваться как часть сопротивления проводников линии, и оно не влияет на результат измерения так, как падение напряжения в конце импульса длительности t измеряется непосредственно на опорном резисторе (предпочтительной является возможность использования аналого-цифрового преобразователя с возможностью перевода в дифференциальный режим измерения). Второе измерение на втором входе линии осуществляется после перевода выхода 4 микроконтроллера 1 в высокоимпедансное состояние. В этом случае ток в линии 5, с помощью которой подключен термометр сопротивления 3, отсутствует, как и падение напряжения на проводниках линии и выходном сопротивлении выходов микроконтроллера 1. При этом измерение напряжения на термометре сопротивления 3 и шунтирующем конденсаторе 4 производят в первый момент времени после завершения импульса напряжения длительностью t. Поэтому отношение сопротивлений опорного резистора и термометра сопротивления определяется отношением измеренных напряжений на опорном резисторе и конденсаторе в первый момент после завершения импульса питания. Из этой пропорциональной зависимости рассчитывается величина сопротивления термометра сопротивления, а по нему и измеряемая температура. При повышении требований к точности измерений может использоваться внешний аналого-цифровой преобразователь.
название | год | авторы | номер документа |
---|---|---|---|
Способ измерения температуры среды | 2022 |
|
RU2781754C1 |
Способ измерения температуры | 2024 |
|
RU2821173C1 |
Способ измерения температуры | 2023 |
|
RU2805639C1 |
Способ измерения температуры | 2020 |
|
RU2752132C1 |
Способ измерения температуры | 2024 |
|
RU2824738C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ | 2013 |
|
RU2534633C2 |
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ | 2013 |
|
RU2547882C2 |
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ | 2007 |
|
RU2358245C1 |
СПОСОБ УПРАВЛЕНИЯ УРОВНЕМ СВЕТООТДАЧИ СВЕТОДИОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2018 |
|
RU2693844C1 |
Цифровой измеритель температуры | 1983 |
|
SU1116329A1 |
Изобретение относится к области термометрии и может использоваться в системах сбора данных для измерения температуры среды или объектов. Предложен способ многоканального измерения температуры, который состоит в поочерёдном питании n термометров сопротивления, шунтированных конденсаторами, через соответствующие линии и общее опорное сопротивление импульсом напряжения со скважностью, при которой средний ток через термометр сопротивления не превышает допустимой величины. При этом импульс напряжения завершается отключением опорного резистора от источника питания, сопротивление термометра сопротивления определяется по результатам измерения падения напряжения на опорном резисторе в конце действия импульса напряжения и напряжения на конце линии, подключенном к опорному резистору, после отключения опорного резистора от источника питания. По величине сопротивления термометра сопротивления определяется температура. Техническим результатом является уменьшение ошибки измерения вносимой влиянием двухпроводной линии, соединяющей термометр сопротивления с системой сбора при существенном упрощении измерительных цепей. 1 ил.
Способ многоканального измерения температуры, заключающийся в поочерёдном питании n термометров сопротивления, шунтированных конденсаторами, через соответствующие линии и общее опорное сопротивление импульсом напряжения со скважностью, при которой средний ток через термометр сопротивления не превышает допустимой величины, а величина ёмкости конденсаторов выбирается такой, чтобы за время действия импульса напряжения его заряд завершился, отличающийся тем, что импульс напряжения завершается отключением опорного резистора от источника питания, сопротивление термометра сопротивления определяется по результатам измерения падения напряжения на опорном резисторе в конце действия импульса напряжения и напряжения на конце линии, подключенном к опорному резистору, после отключения опорного резистора от источника питания.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ | 2013 |
|
RU2534633C2 |
Устройство для измерения температуры | 1986 |
|
SU1394062A1 |
Устройство для дистанционного измерения температуры | 1988 |
|
SU1673874A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ | 2002 |
|
RU2229692C2 |
МНОГОКАНАЛЬНОЕ УСТРОЙСТВО КОНТРОЛЯ ТЕМПЕРАТУРЫ | 2015 |
|
RU2631018C2 |
US 4294115 A 13.10.1981 | |||
US 4122719 A 31.10.1978. |
Авторы
Даты
2022-07-11—Публикация
2021-06-08—Подача