Способ детоксикации почвы, загрязненной тяжелыми металлами Российский патент 2022 года по МПК B09C1/00 C09K17/00 

Описание патента на изобретение RU2777529C1

Область техники, к которой относится изобретение.

Изобретение относится к области охраны окружающей среды и может быть использовано для снижения токсичности почвы населенных пунктов и земель сельскохозяйственного назначения.

Уровень техники.

Результатом активной индустриализации и урбанизации окружающей среды является поступление загрязнителей. В перечне контаминаторов тяжелые металлы продолжают удерживать лидирующие позиции. При поступлении в почву они образуют комплексы с минеральными и органическими компонентами, что увеличивает их токсичность [1]. Подавление процессов жизнедеятельности растений и почвенных животных зависит от способности ионов тяжелых металлов переходить в почвенный раствор, эту форму элементов называют подвижной.

В настоящее время широкое распространение получили различные способы снижения доступности тяжелых металлов и их детоксикации в почве [2]. Так известен способ очистки почв от тяжелых металлов суть которого заключается в высадке травосмеси состава: 30 % тимофеевка луговая, 10 % райграс высокий, 20 % донник желтый, 30 % овсяница луговая, 10 % люцерна желтая с нормой внесения семян 15-20 кг/га, с последующим ее скашиванием в период вегетации и уборкой. А на стадии проведения грубых планировочных работ осуществляют обогащение почвы буроугольной крошкой с нормой внесения 200-220 кг/га [3]. Однако такой способ предполагает использование бурого угля, высокая гигроскопичность которого ограничивает его использование в районах с недостаточным атмосферным увлажнением.

Известен способ очистки почв от тяжелых металлов, путем выращивания растений-фитомелиорантов, а именно сафлора, который высевают в загрязненную почву из расчета 20-22 кг/га, затем доводят растения до фазы окончания цветения и начала отмирания нижних листьев, после чего полностью удаляют из почвы [4]. Недостатком такого метода является проблема накопления биомассы растений, т.к. необходимость дальнейшей транспортировки и утилизации скошенной фитомассы увеличивает риски вторичного загрязнения окружающей среды.

Известен способ детоксикации дерново-подзолистых почв, который перед посевом культурных растений предусматривает их экспозицию с природным цеолитом в дозе 100 - 250 кг/га [5]. Недостатком указанного подхода является ограниченное его использование для почв лесной зоны, загрязненных гербицидами, что не решает задачи детоксикации почв, загрязненных тяжелыми металлами.

Наиболее близким к предложенному изобретению по технической сущности и количеству совпадающих признаков является способ адсорбционной подготовки почвы к фиторемедиации, заключающийся в использовании смеси адсорбентов гидрофильной (вермикулит или клиноптилолит) и гидрофобной природы (активированный уголь) в соотношении 1:3 для снижения содержания полютантов [6]. Недостатком способа является высокая стоимость активированного угля.

Техническая проблема, на решение которой направлено заявленное изобретение, выражается в расширении арсенала экологически безопасных способов детоксикации почв, способствующих уменьшению их биотоксичности.

Техническим результатом предполагаемого изобретения является снижение содержания подвижной формы тяжелых металлов в почвах и, как следствие, их доступности для живых организмов.

Указанный технический результат достигается за счет внесения в загрязненную почву сорбента, состоящего из биоугля, соломы и силикагеля в соотношении 40 %:40 %:20 % с минимальным сроком его экспозиции 30 суток, обеспечивающего поглощение ионов тяжелых металлов и снижение фито- и зоотоксичности.

Осуществление изобретения.

Способ разрабатывался на базе Федерального научного центра биологических систем и агротехнологий Российской Академии Наук (ФГБНУ ФНЦ БСТ РАН), г. Оренбург. Для оценки эффективности предлагаемого изобретения в качестве прототипа был взят способ адсорбционной подготовки почвы к фиторемедиации с использованием адсорбентов гидрофильной (вермикулит или клиноптилолит) и гидрофобной природы (активированный уголь) в соотношении 1:3.

Для выполнения способа детоксикации смешивают предварительно высушенные и измельченные биоуголь и солому с силикагелем в соотношении 40 %:40 %:20 %.

Для реализации изобретения был взят биоуголь, который характеризовался удельной поверхностью от 500 до 1500 м2/г, влажностью и зольностью, не превышающей 5 %, соответствующий ГОСТу 7657-84, с содержанием углерода не менее 85 % (производитель ООО «ВСК», г. Таруса, Россия). Кластерная структура биоугля обеспечивает пролонгированную необратимую сорбцию ионов тяжелых металлов из почвенного раствора.

Внесение соломы (пшеницы) обогащает ее грубым органическим веществом, включающимся в процессы гумификации и обеспечивающим стимулирование процессов жизнедеятельности растений и животных.

Силикагель представляет собой синтетический сорбент с удельной поверхностью до 1000 м2/г, поглощающий тяжелые металлы всем объемом. Он безопасен для живых организмов, устойчив к воздействию факторов окружающей среды и долго сохраняет свою сорбционную активность. В ходе исследования был использован Силикагель КСКГ (диоксид кремния, высушенный гель поликремниевой кислоты, соответствующий ГОСТу 3956-76, производитель ООО «Ноябрь», Московская обл., Люберецкий р-он, п. Томилино, Россия).

Объектом исследования послужили почвы, отобранные на участке, расположенном на расстоянии 250 м (51.442919 N, 57.566141 E) к юго-западу от металлургического комбината ООО «Медногорский медно-серный комбинат» (Оренбургская область, Россия). Почвенный покров участка был представлен черноземом южным легкосуглинистого гранулометрического состава. Отбор проб на участке проводился методом «конверта» в соответствии с ГОСТом 17.4.4.02.84. Всего было отобрано по 5 образцов массой не менее 3,5 кг из слоя 0-20 см. Почвы участка отбора проб характеризовались содержанием гумуса 1,5 %, плотностью 0,97-1,04 г/см3 при мощности гумусового горизонта от 23 до 27 см, слабокислой реакцией почвенного раствора (рНKCl 5,7), превышением значений ПДК по содержанию подвижной формы цинка (7,5 ПДК), никеля (1,15 ПДК) и фонового содержания кадмия в 7,69 раз.

Почву предварительно высушивали, просеивали через сита 5 мм и помещали в пластиковые контейнеры по 300 г. Далее в каждый контейнер вносили сорбенты, а контролем послужила почва без их внесения.

Таким образом варианты опыта включали:

№ 1. Без внесения сорбента;

Внесение сорбентов:

№ 2. Вермикулит : Активированный уголь (1:3) (прототип);

№ 3. Солома : Биоуголь (50 %:50 %);

№4. Солома : Биоуголь : Силикагель (40 %:40 %:20 %).

Каждый вариант опыта был проведен в 10-кратной повторности. Далее почву увлажняли до влажности 70 % и давали высохнуть в естественных условиях. Процедуру увлажнения и высушивания повторяли до 5-7 раз для максимального проявления адсорбционных характеристик предлагаемых сорбентов в течение 30 суток. Затем проводили определение фито- и зоотоксичности почв, а также содержания подвижной формы тяжелых металлов.

Исследование проводили общеизвестными методами в соответствии с ISO 11269-1:2012 и ISO 11269-2:2012 с использованием тест-культуры гороха посевного сорта «Флагман 12» и мягкой яровой пшеницы сорта «Учитель» [7, 8]. В контейнер высаживали до 20 семян растений и оценивали витальные (всхожесть) и морфометрические (длина корня и ростка) показатели. Фитотоксичность почв рассчитывали, как величину обратную всхожести. Из морфометрических показателей определяли длину корней и ростков (см), затем эти показатели суммировали, учитывая общую длину растения (L, см) рассчитывали индекс толерантности (IT) растений:

L=Lкорня+Lростка,

IT=Lвар / Lпрототип*100%

Где: IT - индекс толерантности, %;

L вар - длина исследуемого растения в целом, см;

L прототип - длина растения в варианте обработки - прототип, см.

Оценка зоотоксичности почв осуществлялась согласно ISO 11268-1:2012 [9]. Для проведения исследования дождевые черви (Eisenia fetida) были промыты дистиллированной водой и выдержаны в течение 24 ч на фильтровальной бумаге в чашках Петри. Десять здоровых особей дождевых червей внесли в контейнеры с почвой, которые закрыли перфорированной крышкой для предотвращения потери влаги и поместили в темное место для хранения. Эксперимент проводили в течение 28 суток при постоянном увлажнении и температуре воздуха 22 (2 в 10 повторностях. Контейнеры ежедневно осматривали на предмет извлечения мертвых особей. По завершению эксперимента была рассчитана зоотоксичность почв, как доля погибших в ходе эксперимента особей, выраженная в процентах.

Определение содержания подвижной формы тяжелых металлов проводилось методом инверсионной вольтамперометрии (ПНД Ф 16. 1:2:2.2:2,3.47-06) с помощью анализатора АКВ-07 МК (АО «Аквилон», г. Москва, Российская Федерация). Выбор элементов для анализа определялся тем фактом, что главным источником загрязнения почвенного покрова при производстве черновой меди и серной кислоты являются выбросы Cu, Zn, Pb, Cd и Ni.

Постановка опыта по оценке фитотоксичности почв показала, что всхожесть и морфометрические показатели растений в вариантах внесения вермикулита и активированного угля достоверно превышают аналогичные значения варианта без использования сорбентов (табл. 1). При этом фитотоксичность по отношению к яровой пшенице снижается более чем на 23% относительно варианта прототипа и по отношению к гороху посевному более чем на 39,2%. Индекс толерантности позволяет судить не только об увеличении морфометрических параметров, но и об устойчивости растений к внешним воздействиям. Его значения увеличивались при использовании всех вариантов сорбентов, но максимальное увеличение отмечено для состава солома, биоуголь и силикагель (40%:40%:20%) для яровой пшеницы более чем на 44,5%, а для гороха посевного на 42,3% относительно результатов, полученных в варианте прототипа.

Оценка изменения зоотоксичности загрязненных почв показала снижение показателя при внесении сорбентов различного состава, с минимальным значением (39%) в варианте внесения соломы, биоугля и силикагеля в соотношении 40%:40%:20%.

Определение содержания подвижной формы тяжелых металлов в загрязненных почвах показало, что внесение предлагаемого сорбента достоверно снижало концентрацию Zn более чем на 16,1%, Pb на 34,4% и Cd - 25,1% относительно прототипа (табл. 2). Уменьшение содержания относительно контроля отмечено для всех изученных элементов: Zn на 30,4%, Pb на более чем 39,2%, Cu - 36,05%, Cd - 40,7% и Ni на 32,3%. Внесение в загрязненные почвы сорбентов позволило снизить концентрацию ионов тяжелых металлов в почвенном растворе за счет их поглощения органическими и минеральными компонентами.

Таким образом, полученные результаты свидетельствуют о высокой эффективности использования сорбента, состоящего из соломы, биоугля и силикагеля взятых в соотношении 40%:40%:20% с минимальным сроком его экспозиции 30 суток для детоксикации почв, загрязненных тяжелыми металлами. Внесение которого снижает подвижность ионов металлов в почвенном растворе, их доступность и токсичность для растений и почвенных животных.

Список литературы:

1. Новиков С.Г. Экологическая оценка загрязнения тяжелыми металлами почв урбанизированных территорий по категориям землепользования (на примере г. Петрозаводска): автореф. дис.(канд. биол. наук. - Петрозаводск, 2014. - 24 с.

2. Jacukowicz-Sobala I, Ociński D, Kociołek-Balawejder E. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Waste Manag Res. 2015 Jul;33(7):612-29. DOI: 10.1177/0734242X15584841.

3. Патент RU №2712542 C1. Опубликовано 29.01.2020. Бюл. №4.

4. Патент RU №2007146036. Опубликовано 20.06.2009.

5. Патент RU №2759603 C1. Опубликовано 16.11.2021. Бюл. №32.

6. Патент RU №2692554 C1. Опубликовано 25.06.2019. Бюл. №18.

7. ISO 11269-1: 2012 Soil quality. Determination of the impact of pollutants on the flora of the soil. Part 1. Method for measuring root growth retardation. P. 24.

8. ISO 11269-2: 2012 Soil quality. Determination of the impact of pollutants on the flora of the soil. Part 2. Effects of chemicals on the growth of higher plants. P. 26.

9. ISO 11268-1:2012 (en) Soil quality - Effects of pollutants on earthworms - Part 1: Determination of acute toxicity to Eisenia fetida/Eisenia Andrei. P. 26.

Таблица 1
Биотоксичность почв, загрязненных тяжелыми металлами
Варианты опыта Фитотоксичность по отношению к яровой пшенице, % IT яровой пшеницы% Фитотоксичность по отношению к гороху посевному, % IT гороха посевного, % Зоотоксичность, % Без внесения сорбента 77,1±0,87 100±0 85,3±0,39 100±0 90±1,09 Внесение сорбентов Вермикулит : активированный уголь (1:3) (прототип) 53,0±0,63 113,4±0,48 49,2±0,97 137,8±0,68 60±1,65 Солома : Биоуголь (50 %:50 %) 48,3±0,33 129,9±0,39* 36,9±0,43* 157,1±0,29* 69±1,44 Солома : Биоуголь : Силикагель (40 %:40 %:20 % ) 30,0±0,49* 157,9±0,55* 10±0,6* 180,1±0,76* 39±1,09*

Примечание: * достоверно при р ≤ 0,05 (различие с прототипом).

Таблица 2
Содержание подвижной формы тяжелых металлов в черноземе южном после внесения сорбентов
Варианты опыта Zn, мг/кг Pb, мг/кг Cu, мг/кг Cd, мг/кг Ni, мг/кг Без внесения сорбента 172,51 4,46 1,47 3,02 4,61 Внесение сорбентов Вермикулит : активированный уголь (1:3) (прототип) 143,24 4,13 1,03 2,39 3,26 Солома : Биоуголь (50 %:50 %) 130,24 3,83 1,35 2,58 4,17 Солома : Биоуголь : Силикагель (40 %:40 %:20 % ) 120,12* 2,71* 0,94 1,79* 3,12

Примечание: * достоверно при р ≤ 0,05 (различие с прототипом).

Похожие патенты RU2777529C1

название год авторы номер документа
СПОСОБ ОБЕЗВРЕЖИВАНИЯ УГЛЕВОДОРОДСОДЕРЖАЩИХ ШЛАМОВ 2010
  • Григорьева Татьяна Владимировна
  • Несмелов Александр Александрович
  • Ильинская Ольга Николаевна
  • Наумова Римма Павловна
  • Мухаметшин Ильнар Рафкатович
  • Смолко Андрей Алексеевич
RU2464114C2
СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ОЧИСТНЫХ СООРУЖЕНИЙ НЕФТЕХИМИЧЕСКИХ И НЕФТЕПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВ 2006
  • Якушева Ольга Ивановна
  • Наумова Римма Павловна
  • Самольянов Анатолий Андреевич
  • Кичигин Виктор Петрович
  • Галухин Владимир Анатольевич
  • Никонорова Валентина Николаевна
  • Аскаров Исрафил Исмагилович
  • Галиев Ринат Александрович
RU2329200C2
Способ повышения экологической безопасности продукции растениеводства 2023
  • Терехова Надежда Алексеевна
  • Галактионова Людмила Вячеславовна
  • Веденеева Наталья Георгиевна
RU2809384C1
Мелиорант для почв земель сельскохозяйственного назначения 2024
  • Галактионова Людмила Вячеславовна
  • Терехова Надежда Алексеевна
  • Холодилина Татьяна Николаевна
  • Веденеева Наталья Георгиевна
  • Лебедев Святослав Валерьевич
  • Юрак Вера Васильевна
  • Душин Алексей Владимирович
  • Лебзин Максим Сергеевич
RU2826149C1
СПОСОБ СНИЖЕНИЯ АККУМУЛЯЦИИ ТЯЖЕЛЫХ МЕТАЛЛОВ ЯРОВОЙ ПШЕНИЦЕЙ В УСЛОВИЯХ ТЕХНОГЕННО ЗАГРЯЗНЕННОГО АГРОЦЕНОЗА 2020
  • Галактионова Людмила Вячеславовна
  • Терехова Надежда Алексеевна
  • Лебедев Святослав Валерьевич
  • Ермаков Александр Александрович
  • Вершинина Ирина Александровна
  • Душин Алексей Владимирович
  • Юрак Вера Васильевна
  • Рогачев Борис Георгиевич
RU2763191C1
Состав для снижения пылевой нагрузки на экосферу и рекультивации поверхности хвостохранилища 2019
  • Крупская Людмила Тимофеевна
  • Ищенко Евгений Александрович
  • Голубев Дмитрий Андреевич
  • Колобанов Константин Александрович
  • Растанина Наталья Константиновна
RU2707030C1
Способ получения органического удобрения-мелиоранта 2023
  • Галактионова Людмила Вячеславовна
  • Терехова Надежда Алексеевна
  • Лебедев Святослав Валерьевич
  • Юрак Вера Васильевна
  • Душин Алексей Владимирович
RU2792681C1
Способ получения биочара из осадков сточных вод и древесных опилок для восстановления почв от гербицидов 2022
  • Брындина Лариса Васильевна
  • Бакланова Ольга Васильевна
  • Петков Александр Федорович
  • Анучин Александр Иванович
  • Паринов Дмитрий Александрович
  • Медведев Илья Николаевич
RU2779460C1
Состав для рекультивации поверхности хвостохранилищ, содержащих токсичные отходы переработки минерального сырья 2021
  • Крупская Людмила Тимофеевна
  • Леоненко Нина Александровна
  • Леоненко Анна Валерьевна
  • Колобанов Константин Александрович
  • Филатова Мария Юрьевна
RU2783893C1
ФОСФАТРАСТВОРЯЮЩИЙ ШТАММ PSEUDOMONAS SPECIES 181a С ФУНГИЦИДНЫМИ СВОЙСТВАМИ 2010
  • Дунайцев Игорь Анатольевич
  • Клыкова Марина Викторовна
  • Кондрашенко Татьяна Николаевна
  • Сомов Алексей Николаевич
  • Старшов Алексей Александрович
  • Аитов Руслан Сагитзянович
  • Дятлов Иван Алексеевич
RU2451069C1

Реферат патента 2022 года Способ детоксикации почвы, загрязненной тяжелыми металлами

Изобретение относится к области охраны окружающей среды и может быть использовано для снижения токсичности почвы населенных пунктов и земель сельскохозяйственного назначения. Способ включает внесение сорбента, состоящего из биоугля, соломы и силикагеля в соотношении 40%:40%:20% с минимальным сроком его экспозиции 30 суток. Техническая проблема, на решение которой направлено заявленное изобретение, выражается в расширении арсенала экологически безопасных способов детоксикации почв, способствующих уменьшению их биотоксичности. Техническим результатом изобретения является снижение содержания подвижной формы тяжелых металлов в почвах и, как следствие, их доступности для живых организмов. 2 табл.

Формула изобретения RU 2 777 529 C1

Способ детоксикации почвы, загрязненной тяжелыми металлами, отличающийся тем, что в загрязненные тяжелыми металлами почвы вносят сорбент, содержащий биоуголь, солому и силикагель в соотношении 40%:40%:20%, и в течение не менее чем 30 суток обеспечивают его экспозицию.

Документы, цитированные в отчете о поиске Патент 2022 года RU2777529C1

Способ адсорбционной подготовки почвы к фиторемедиации 2017
  • Трояновская Екатерина Сергеевна
  • Тихомирова Елена Ивановна
  • Кошелев Алексей Васильевич
  • Заматырина Валентина Алексеевна
RU2692554C1
Состав для снижения пылевой нагрузки на экосферу и рекультивации поверхности хвостохранилища 2019
  • Крупская Людмила Тимофеевна
  • Ищенко Евгений Александрович
  • Голубев Дмитрий Андреевич
  • Колобанов Константин Александрович
  • Растанина Наталья Константиновна
RU2707030C1
СОСТАВ ДЛЯ РЕКУЛЬТИВАЦИИ ЗАГРЯЗНЕННЫХ ПОЧВ 2008
  • Пономаренко Дмитрий Владимирович
  • Перевалов Сергей Николаевич
  • Ященко Вячеслав Григорьевич
RU2406579C2
CN 109622594 A, 16.04.2019
Ваганова Л.А., Лопарев Е.В., Рыкова А.И
Сорбционная активность соломы по отношению к ионам тяжелых металлов // Вестник КГУ
- Курган
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1

RU 2 777 529 C1

Авторы

Галактионова Людмила Вячеславовна

Терехова Надежда Алексеевна

Лебедев Святослав Валерьевич

Юрак Вера Васильевна

Душин Алексей Владимирович

Даты

2022-08-05Публикация

2022-01-24Подача