КОМПЛЕКС ДЛЯ ПОДАЧИ ВОДЫ В ПАРОГЕНЕРАТОРЫ Российский патент 2022 года по МПК F22D5/00 

Описание патента на изобретение RU2778594C1

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к системам подачи воды в парогенераторы из открытых источников воды, таких как озера, моря или искусственные водоемы. [F22D5/00].

Из уровня техники известна ЯДЕРНАЯ ПАРОПРОИЗВОДИТЕЛЬНАЯ УСТАНОВКА С РЕАКТОРОМ, ОХЛАЖДАЕМЫМ ВОДОЙ ПОД ДАВЛЕНИЕМ [RU2200990, опубл. 20.03.2003 г.], включающая реактор, парогенераторы, главные циркуляционные насосы, главные циркуляционные трубопроводы, компенсатор объема, гидроемкости с холодной водой , причем реактор, в свою очередь, включает корпус высокого давления, крышку, патрубки приводов системы управления цепной реакцией деления, патрубки большого диаметра для подвода и отвода воды в парогенератор, а также патрубки малого диаметра, соединенные с гидроемкостями, металлическую шахту, блок защитных труб и активную зону, образованную тепловыделяющими сборками, включающими тепловыделяющие элементы стержневого типа с оболочками из сплава циркония и таблетки оксида урана и направляющие трубы для поглощающих стержней, которые соединены штангой, размещенной в защитных трубах блока защитных труб, отличающаяся тем, что в блоке защитных труб с помощью дополнительной плиты выполнен коллектор, подключенный трубопроводами к патрубкам в обечайке блока защитных труб, которые соосны с отверстиями в металлической шахте, внутренними патрубками корпуса и патрубками, соединенными с гидроемкостями; компенсатор давления подключен к одному из трубопроводов, соединяющему гидроемкости с корпусом или непосредственно к корпусу; в пределах этого коллектора в защитных трубах блока защитных труб выполнены отверстия для прохода в них холодной воды ; защитные трубы со штангами приводов регулирующих стержней снабжены дополнительными защитными трубами, на верхнем конце которых выполнены уплотняющие подпружиненные элементы, соединенные с патрубками приводов поглощающих стержней; подпружиненные элементы снабжены подвижными шаровыми уплотняющими элементами; в направляющих трубах ТВС выполнена перфорация, причем на половине направляющих труб перфорация выполнена преимущественно в нижней части активной зоны, а в остальных направляющих трубах перфорация выполнена преимущественно в верхней части активной зоны.

Недостатками данного аналога являются:

- низкая экологичность аналога из-за использования ядерного реактора;

- высокая конструктивная сложность аналога;

- отсутствие возможности забора и доставки воды в случае, если источник воды располагается на значительном удалении от реактора.

Также из уровня техники известен СПОСОБ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОСНАБЖЕНИЯ СОБСТВЕННЫХ НУЖД АЭС [RU2702100, опубл. 04.10.2019 г.], содержащей парогенераторы , основную паротурбинную установку (ПТУ), подогреватели высокого (ПВД) и низкого (ПНД) давления, деаэратор, дополнительную паротурбинную установку, конденсаторы основной и дополнительной ПТУ, циркуляционные насосы конденсаторов основной и дополнительной ПТУ, быстродействующие редукционные установки с выхлопом в атмосферу (БРУ-а) и с выхлопом в конденсатор дополнительной турбины (БРУ-к), электрогенераторы основной и дополнительной ПТУ, основной питательный насос, дополнительный питательный электронасос, конденсатные насосы конденсаторов основной и дополнительной ПТУ, устройства парораспределения, масляные выключатели, закрытое распределительное устройство (ЗРУ), при этом входы основной и дополнительной ПТУ соединены трубопроводами с устройством парораспределения, основной и дополнительный питательные насосы подсоединены к деаэратору с одной стороны и к тракту питательной воды перед ПВД с другой, БРУ-к подсоединен к устройству парораспределения перед дополнительной ПТУ с одной стороны и к конденсатору дополнительной ПТУ с другой, БРУ-к подсоединен к устройству парораспределения перед основной ПТУ с одной стороны и к конденсатору основной ПТУ с другой, БРУ-а подсоединен к устройству парораспределения, конденсатный насос дополнительной ПТУ соединен с конденсатором дополнительной ПТУ с одной стороны и с трактом конденсата основной ПТУ после конденсатного насоса основной ПТУ перед подогревателями низкого давления с другой, электрогенератор основной ПТУ синхронизирован с энергетической системой , к ЗРУ подключены электрогенератор дополнительной ПТУ через масляный выключатель, энергосистема через масляный выключатель и система электроснабжения собственных нужд, отличающийся тем, что, дополнительная ПТУ всегда работает на электроснабжение потребителей собственных нужд, используемых в процессе расхолаживания реактора при обесточивании, в том числе: дополнительный питательный электронасос, конденсатные насосы основной и дополнительной ПТУ, циркуляционные насосы основной и дополнительной ПТУ, масляные насосы основной и дополнительной ПТУ, благодаря чему при полном обесточивании АЭС дополнительная паротурбинная установка продолжает бесперебойно вырабатывать необходимую для электроснабжения собственных нужд станции электроэнергию посредством использования пара, получаемого в парогенераторах за счет энергии остаточного тепловыделения активной зоны реактора, при этом избыточная часть генерируемого пара направляется через БРУ-к в конденсаторы основной и дополнительной ПТУ.

Недостатками данного аналога являются:

- низкая экологичность аналога из-за использования ядерного реактора;

- высокая конструктивная сложность аналога.

Наиболее близким по технической сущности является УСТАНОВКА С КОМБИНИРОВАННЫМ ЦИКЛОМ РАБОТЫ, УСТРОЙСТВО КОТЛА И СПОСОБ ЕГО РАБОТЫ [US2018202322, опубл. 19.07.2018 г.]. Котел снабжен: конденсатными насосами (конденсатный насос и вспомогательный конденсатный насос); ответвлением, по которому вода, подаваемая конденсатными насосами, разветвляется по нескольким направлениям; барабан низкого давления, который соединен с одной (ответвительной линией низкого давления) из двух линий; и насос подачи воды, который соединен со второй (ответвительной линией высокого давления) линией, и который перекачивает воду в парогенератор (испаритель высокого давления).

Основной технической проблемой прототипа является высокие затраты электроэнергии для доставки воды до парогенераторов расположенных на значительно удалении от источника воды, так как прототипом не предусмотрена возможность забора и подачи воды в испаритель высокого давления в случае, если источник воды располагается на значительном удалении. В связи с чем для доставки воды потребуется использования дополнительных неоптимальных и неэкономичных средств, требующие значительных энерго, и, в частности, электрозатрат.

Задачей изобретения является устранение недостатков прототипа.

Техническим результатом заявленного изобретения является понижение затрат электроэнергии для доставки воды до парогенераторов, расположенных на значительно удалении от источника воды.

Указанный технический результат достигается за счет того, что комплекс для подачи воды в парогенераторы состоит из трубы впускного тракта, которая первым концом соединена с первым центробежным насосом, вторым коном с источником воды, второй конец имеет впускное отверстие с фильтром грубой очистки, выход первого центробежного насоса соединен с баком аккумулятором с отстойником, который последовательно соединен со вторым центробежным насосом, выход которого соединен с первым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой второй центробежный насос и поршневой насос, выход которого соединен со вторым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой поршневой насос и парогенератор, выход парогенератора соединен с турбиной и генератором, первый выход которого соединен с потребителем электроэнергии, а второй выход соединен с первым центробежным насосом, вторым центробежным насосом и поршневым насосом посредством соединительных кабелей.

В частности, первый контур движения воды соединяет между собой через систему керамических труб один центробежный насос с несколькими поршневыми насосами.

В частности, во втором контуре движения воды расположено последовательно несколько поршневых насосов.

Краткое описание чертежей

На фиг. 1 показана общая схема комплекса для подачи воды в парогенераторы.

На фиг. 2 показана схема комплекса для подачи воды в парогенераторы и система электропитания.

На фиг. 3 показан центробежный насос комплекса для подачи воды в парогенераторы.

На фиг. 4 показана схема поршневого насоса комплекса для подачи воды в парогенераторы.

На фигурах обозначено: 1 – источник воды; 2 – впускное отверстие; 3 – впускной тракт; 4 – центробежный насос; 5 – первый контур движения воды; 6 – керамические трубы; 7 – поршневой насос; 8 – второй контур движения воды; 9 – парогенератор; 10 – выпускной тракт; 11 – впускной патрубок; 12 – корпус; 13 – ротор; 14 – привод; 15 – выпускной патрубок; 16 – входной клапан; 17 – поршень; 18 – шатун; 19 – кривошип; 20 – выходной клапан; 21 – фильтр грубой очистки; 22 – бак аккумулятор с отстойником; 23 – турбина с генератором.

Осуществление изобретения.

Комплекс для подачи воды в парогенераторы включает в себя источник воды 1, в качестве которого могут выступать озера, водохранилища, пруды и др. естественные или искусственные источники. В источнике воды 1 располагается впускное отверстие 2, которое является частью впускного тракта 3. Впускной тракт 3 может представлять из себя гибкую или жесткую трубу, соединенную с центробежным насосом 4. На входе впускного тракта 3, на впускном отверстии 2 расположен фильтр грубой очистки 21, выполненный с возможностью фильтрации крупного мусора, находящегося в источнике воды 1. На выходе центробежного насоса 4 располагается бак аккумулятор с отстойником 22, выполненный с возможностью длительного хранения воды из источника воды 1 для очистки от илистых образований и мелкодисперсного мусора. На выходе аккумулятора с отстойником 22 располагается центробежный насос 4, на выходе которого располагается первый контур движения воды 5, который представляет из себя систему керамических труб 6, соединяющих между собой центробежный насос 4 и поршневые насосы 7. При этом первый контур движения воды 5 может соединять между собой через систему керамических труб 6 один центробежный насос 4 с несколькими поршневыми насосами 7. На выходе поршневого насоса 7 располагается второй контур движения воды 8, который представляет из себя систему керамических труб 6, соединяющих между собой поршневые насосы 7 и парогенераторы 9. При этом керамические трубы 6 выполнены с возможностью их поднимания и опускания в теплообменник парогенератора 9. На выходе парогенераторов располагается выпускные тракты 10, выполненные с возможностью подачи пара на турбины с генераторами 23, которые выполнены с возможностью запитывать насосную группу, а именно центробежные насосы 4 и поршневые насосы 7, посредством системы соединительных кабелей (показано на фиг .2).

Возможен вариант реализации, когда во втором контуре движения воды 8 расположено последовательно несколько поршневых насосов 7, таким образом, чтобы вода поступала в парогенератор 9 под высоким давлением.

На входе центробежного насоса 4 располагается впускной патрубок 11, который является оконечной частью впускного тракта 3. Впускной патрубок 11 соединяет впускной тракт 3 с корпусом 12 центробежного насоса, внутри которого располагается ротор 13, соединенный с приводом 14, выполненный с возможностью вращать ротор 13. На выходе центробежного насоса 4 расположен выпускной патрубок 15. При этом пространство внутреннего объема центробежного насоса 4 образованного впускным патрубком 11, замкнутым пространством перед ротором 13 и замкнутым пространством за ротором 13 является пространством для движения воды. Выпускной патрубок 15 соединяет внутренний объем центробежного насоса 4 предназначенного для движения воды с первым контуром движения воды 5, а именно со входом системы керамических труб 6.

На входе поршневого насоса 7 располагается входной клапан 16, который является оконечной частью первого контура движения воды 5 и выполнен с возможностью подачи воды во внутренний объем поршневого насоса 7. Во внутреннем объеме поршневого насоса 7 располагается как минимум один поршень 17, выполненный с возможностью возвратно-поступательного движения. Поршень 17 соединен с шатуном 18, который соединен с кривошипом 19, один конец которого закреплен в центре окружности, а второй конец находится на ее радиусе. При этом, второй конец кривошипа 19 выполнен с возможностью движения по радиусу окружности. В противоположной части внутреннего объема поршневого насоса 7 относительно входного клапана 16 располагается выходной клапан 20, который выполнен с возможностью подачи воды во внутренний объем керамических труб 6, образующих второй контур движения воды 8.

Комплекс для подачи воды в парогенераторы функционирует следующим образом, первоначально из источника воды 1 центробежным насосом 4 через впускное отверстие 2 впускного тракта 3 осуществляют забор воды. Далее при помощи фильтра грубой очистки 21 воду фильтруют от крупного мусора, далее вода поступает на центробежный насос 4 после чего в бак аккумулятор с отстойником 22 где происходит очистка от илистых образований. Далее, очищенная вода попадает в следом расположенный центробежный насос 4 проходя через который, на выходе получает требуемое давление и попадает в первый контур движения воды. Далее, благодаря увеличенному давлению, вода попадает через систему керамических труб 6 в поршневые наосы 7, проходя через которые давление воды снова увеличивается до требуемого значения для дальнейшего движения. Далее, на выходе поршневых насосов 7 вода движется по второму контуру движения воды 8 и попадает в парогенераторы 9, далее полученный пар в выпускные тракты 10 и на турбины с генераторами 23. Часть получаемой энергии уходит к потребителю, а часть запитывает насосную группу через систему соединительных кабелей.

Для безопасной эксплуатации керамические трубы 6 поднимают и опускают в теплообменник парогенератора 9 в зависимости от текущей температуры теплообменника.

Технический результат изобретения понижение затрат электроэнергии для доставки воды до парогенераторов расположенных на значительно удалении от источника воды достигается за счет того, что на входе впускного тракта 3, на впускном отверстии 2 расположен фильтр грубой очистки 21, препятствующий попаданию крупного мусора в систему подачи воды, а на выходе центробежного насоса 4 располагается бак аккумулятор с отстойником 22, выполненный с возможностью длительного хранения воды из источника воды 1 для очистки от илистых образований и мелкодисперсного мусора. Данные решения препятствуют закупориванию керамических труб 6. При этом снижение вероятности закупоривания приводит к тому, что вода испытывает меньшее сопротивление при движении, и как следствие на ее доставку тратиться меньшее количество энергии. Для обеспечения требуемой дальности доставки воды: на выходе аккумулятора с отстойником 22 располагается центробежный насос 4, на выходе которого располагается первый контур движения воды 5, который представляет из себя систему керамических труб 6, соединяющих между собой центробежный насос 4 и поршневые насосы 7. А так как контур движения воды 5 может соединять между собой через систему керамических труб 6 один центробежный насос 4 с несколькими поршневыми насосами 7 заявленным техническим решение может быть обеспечена доставка воды до нескольких потребителей. На выходе поршневого насоса 7 располагается второй контур движения воды 8, который представляет из себя систему керамических труб 6, соединяющих между собой поршневые насосы 7 и парогенераторы 9, что обеспечивает дальнейшую доставку воды под высоким давлением до конечных потребителей. Керамические трубы 6 выполнены с возможностью их поднимания и опускания в теплообменник парогенератора 9, что обеспечивает контроль работы системы и ее безаварийную эксплуатацию. На выходе парогенераторов располагается выпускные тракты 10, выполненные с возможностью подачи пара на турбины с генераторами 23, которые выполнены с возможностью запитывать насосную группу, а именно центробежные насосы 4 и поршневые насосы 7, посредством системы соединительных кабелей, что позволяет часть полученной энергии использовать для поддержания системы подачи воды в рабочем состоянии, тем самым снижая внешние затраты энергии и повышая энергоэффективность.

Заявитель в 2021 году осуществил инженерный расчёт и моделирование вышеописанной системы, в ходе чего был подтвержден заявленный технический результат. Понижение затрат электроэнергии для доставки воды до парогенераторов расположенных на значительно удалении от источника воды составило порядка 20- 30 %. При этом использование центробежных 4 и поршневых 7 насосов на различных участках системы подачи воды обосновывается проведенными расчетами и их конструктивными особенностями, в частности поршневые наосы обеспечивают лучшее качеству функционирования при использовании на высоте, вдали от источника воды. Использование керамических труб 6 обосновывается их устойчивостью к воздействию кислот и температур, надежностью и долгим сроком эксплуатации.

Пример достижения технического результата пусть имеется источник воды 1 в виде пресного озера и потребитель, расположенный на расстоянии 1200 м на вершине вулкана. Для доставки воды, исходя из расчетов потребуется 2 центробежных насоса 4 и 2 поршневых насоса 7. Вырабатываемая при этом электроэнергия, способна на 50% обеспечить электроэнергией насосную группу, чем достигается заявленный технический результат. С учетом того, что в рассматриваемом географическом районе подача электропитания для наосов крайне затруднена, данное техническое решение является актуальным.

Похожие патенты RU2778594C1

название год авторы номер документа
СПОСОБ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОСНАБЖЕНИЯ СОБСТВЕННЫХ НУЖД АЭС 2019
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
RU2702100C1
СПОСОБ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ РАБОТЫ АЭС В УСЛОВИЯХ НЕРАВНОМЕРНОГО ЭНЕРГОПОТРЕБЛЕНИЯ НА ОСНОВЕ ВОДОРОДНО-ТЕПЛОВОГО АККУМУЛИРОВАНИЯ 2021
  • Егоров Александр Николаевич
  • Юрин Валерий Евгеньевич
RU2759559C1
Способ повышения эффективности аварийного резервирования собственных нужд двухконтурной АЭС 2023
  • Аношин Даниил Михайлович
  • Аминов Рашид Зарифович
RU2812839C1
СПОСОБ ПОВЫШЕНИЯ МАНЕВРЕННОСТИ И БЕЗОПАСНОСТИ АЭС 2015
  • Батенин Вячеслав Михайлович
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
RU2604208C1
РЕГЕНЕРАТИВНАЯ ПАРОТУРБИННАЯ УСТАНОВКА 2001
  • Иванников Н.П.
RU2215878C2
Способ повышения мощности и безопасности энергоблока АЭС с реактором типа ВВЭР на основе теплового аккумулирования 2017
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
  • Муртазов Марат Асланович
RU2680380C1
СПОСОБ РАСХОЛАЖИВАНИЯ ВОДООХЛАЖДАЕМОГО РЕАКТОРА ПОСРЕДСТВОМ МНОГОФУНКЦИОНАЛЬНОЙ СИСТЕМЫ ОТВОДА ОСТАТОЧНОГО ТЕПЛОВЫДЕЛЕНИЯ В УСЛОВИЯХ ПОЛНОГО ОБЕСТОЧИВАНИЯ АЭС 2015
  • Бессонов Валерий Николаевич
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
RU2601285C1
УСТАНОВКА ДЛЯ ПЕРЕГОНКИ ЖИДКОСТЕЙ И ВЫПАРИВАНИЯ РАСТВОРОВ 1995
  • Зимин Борис Алексеевич
RU2090512C1
СПОСОБ ПОВЫШЕНИЯ МАНЕВРЕННОСТИ И БЕЗОПАСНОСТИ АЭС НА ОСНОВЕ ТЕПЛОВОГО И ХИМИЧЕСКОГО АККУМУЛИРОВАНИЯ 2017
  • Юрин Валерий Евгеньевич
  • Егоров Александр Николаевич
RU2640409C1
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ С ВНЕШНИМ ПОДВОДОМ ТЕПЛОТЫ И ДВИГАТЕЛЬ С ВНЕШНИМ ПОДВОДОМ ТЕПЛОТЫ 1992
  • Замараев Олег Александрович
  • Замараев Юрий Александрович
RU2050442C1

Иллюстрации к изобретению RU 2 778 594 C1

Реферат патента 2022 года КОМПЛЕКС ДЛЯ ПОДАЧИ ВОДЫ В ПАРОГЕНЕРАТОРЫ

Изобретение относится к области теплотехники и может быть использовано в системах подачи воды в парогенераторы из открытых источников воды, таких как озера, моря или искусственные водоемы. Комплекс для подачи воды в парогенераторы состоит из трубы впускного тракта, которая первым концом соединена с первым центробежным насосом, вторым концом - с источником воды, второй конец имеет впускное отверстие с фильтром грубой очистки, выход первого центробежного насоса соединен с баком аккумулятором с отстойником, который последовательно соединен со вторым центробежным насосом, выход которого соединен с первым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой второй центробежный насос и поршневой насос, выход которого соединен со вторым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой поршневой насос и парогенератор, выход парогенератора соединен с турбиной и генератором, первый выход которого соединен с потребителем электроэнергии, а второй выход соединен с первым центробежным насосом, вторым центробежным насосом и поршневым насосом посредством соединительных кабелей. Технический результат - понижение затрат электроэнергии для доставки воды до парогенераторов, расположенных на значительном удалении от источника воды. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 778 594 C1

1. Комплекс для подачи воды в парогенераторы состоит из трубы впускного тракта, которая первым концом соединена с первым центробежным насосом, вторым концом - с источником воды, второй конец имеет впускное отверстие с фильтром грубой очистки, выход первого центробежного насоса соединен с баком аккумулятором с отстойником, который последовательно соединен со вторым центробежным насосом, выход которого соединен с первым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой второй центробежный насос и поршневой насос, выход которого соединен со вторым контуром движения воды, представляющим из себя систему керамических труб, которые соединяют между собой поршневой насос и парогенератор, выход парогенератора соединен с турбиной и генератором, первый выход которого соединен с потребителем электроэнергии, а второй выход соединен с первым центробежным насосом, вторым центробежным насосом и поршневым насосом посредством соединительных кабелей.

2. Комплекс по п. 1, отличающийся тем, что первый контур движения воды соединяет между собой через систему керамических труб один центробежный насос с несколькими поршневыми насосами.

3. Комплекс по п. 1, отличающийся тем, что во втором контуре движения воды расположено последовательно несколько поршневых насосов.

Документы, цитированные в отчете о поиске Патент 2022 года RU2778594C1

ЭЛЕКТРОСТАНЦИЯ И СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ С КОМБИНИРОВАНИЕМ ЦИКЛОВ 1999
  • Роллинс Iii Вильям Скотт
RU2248453C2
Измерительный микроскоп для измерения линейных и угловых величин 1952
  • Мартынов А.Д.
SU97452A1
Испаритель для получения пара с помощью магмы вулкана и способ его работы 2018
  • Кулмагамбетов Ануар Райханович
RU2686656C1
СПОСОБ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОСНАБЖЕНИЯ СОБСТВЕННЫХ НУЖД АЭС 2019
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
RU2702100C1
СПОСОБ ПРОКЛАДКИ ТРУБОПРОВОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Забелин А.М.
  • Микульшин Г.Ю.
RU2120366C1

RU 2 778 594 C1

Авторы

Степучев Сергей Алексеевич

Даты

2022-08-22Публикация

2021-09-28Подача