СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА НА УСТАНОВКАХ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С ТУРБОДЕТАНДЕРНЫМИ АГРЕГАТАМИ НА КРАЙНЕМ СЕВЕРЕ РФ Российский патент 2022 года по МПК E21B43/34 F17D3/01 F25J3/08 

Описание патента на изобретение RU2783036C1

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности, к автоматическому поддержанию температурного режима технологических процессов установки низкотемпературной сепарации газа (далее - установка), с применением турбодетандерных агрегатов (ТДА), работающих в условиях Крайнего Севера РФ.

Известен способ автоматизации установки низкотемпературной сепарации газа [см., например, стр. 406, Р.Я. Исакович, В.И. Логинов, В.Е. Попадько. Автоматизация производственных процессов нефтяной и газовой промышленности. Учебник для вузов, М., Недра, 1983, 424 с.], который обеспечивает поддержание температуры сепарации на установке с помощью клапана-регулятора (КР), изменяющего расход холодного газа, отводимого от низкотемпературного сепаратора через теплообменник.

Недостатком данного способа является то, что поддержание температурного режима на установке регулируется расходом газа, проходящего через теплообменник, что вызывает колебания температуры газа, подаваемого в магистральный газопровод (МГП). Так же отсутствует контроль и поддержание необходимой температуры осушенного газа и нестабильного газового конденсата (НГК), подаваемых соответственно в МГП и магистральный конденсатопровод (МКП) с целью защиты вечномерзлых грунтов от размораживания при подземной прокладке трубопроводов на Крайнем Севере [см., например, стр. 33-34, Ананенков А.Г., Ставкин Г.П., Андреев О.П., Арабский А.К., Салихов З.С., Талыбов Э.Г. АСУ ТП газопромысловых объектов. - М.: ООО «Недра-Бизнесцентр», 2003. - 343 с.: ил.; стр. 19; Дмитриев В.М., Ганджа Т.В. и др. Интеллектуализация управления технологическими процессами на углеводородных месторождениях. Томск: В-Спектр, 2012. - 212 с.].

Известен способ автоматизации установки низкотемпературной сепарации газа [см., например, стр. 112, Б.Ф. Тараненко, В.Т. Герман. Автоматическое управление газопромысловыми объектами. М., "Недра", 1976 г., 213 с.], который обеспечивает автоматическое поддержание заданного значения температуры сепарации на установке путем поддержания необходимого перепада давления на штуцере-регуляторе, установленном на входе в низкотемпературный сепаратор, путем коррекции давления на выходе первой ступени сепарации установки.

Недостатком данного способа является то, что поддержание температурного режима на установке осуществляется путем регулирования перепада давления на редуцирующем КР, установленном на входе в низкотемпературный сепаратор установки. Это, в свою очередь, накладывает ограничения на входное давление и расход газа по установке, а также не предусматрен контроль и поддержание необходимой температуры осушенного газа и НГК, подаваемого, соответственно, в МГП и МКП, с целью защиты вечномерзлых грунтов от размораживания при подземной прокладке трубопроводов на Крайнем Севере [см. например, стр. 33-34, Ананенков А.Г., Ставкин Г.П., Андреев О.П., Арабский А.К., Салихов З.С., Талыбов Э.Г. АСУ ТП газопромысловых объектов. - М.: ООО «Недра-Бизнесцентр», 2003. - 343 с.: ил.; стр. 19, Дмитриев В.М., Ганджа Т.В. и др. Интеллектуализация управления технологическими процессами на углеводородных месторождениях. Томск: В-Спектр, 2012. - 212 с.].

Наиболее близким по технической сущности к заявляемому изобретению является способ автоматического поддержания температурного режима технологических процессов с применением ТДА на установке низкотемпературной сепарации газа в условиях Крайнего Севера [см. патент РФ №2680532], включающий в себя предварительную очистку добытой газоконденсатной смеси от механических примесей с частичным отделением смеси НГК и водного раствора ингибитора (ВРИ) в сепараторе первой ступени сепарации. Эту смесь НГК и ВРИ из кубовой части сепаратора отводят в разделитель жидкостей (РЖ). Газоконденсатную смесь с выхода сепаратора первой ступени сепарации охлаждают путем адиабатического расширения в ТДА и подают в низкотемпературный сепаратор второй ступени сепарации, где происходит ее окончательное разделение на осушенный холодный газ и смесь НГК с ВРИ. Эту смесь НГК с ВРИ так же отводят в РЖ, где осуществляют ее дегазацию и разделяют на фракции.

При этом газоконденсатную смесь, поступающую с выхода сепаратора первой ступени сепарации, разделяют на два потока и подают их для предварительного охлаждения на вход первых секций рекуперативных теплообменников, далее ТО «газ-газ» и ТО «газ-конденсат». Распределение газоконденсатной смеси по потокам осуществляют с помощью КР установленного на входе ТО «газ-конденсат». Этот КР регулирует расход газоконденсатной смеси через ТО «газ-конденсат», обеспечивая поддержание заданной температуры смеси НГК и ВРИ на выходе второй секции ТО «газ-конденсат». После прохождения первых секций ТО оба потока газоконденсатной смеси объединяют и подают на вход турбины ТДА.

Скорость вращения турбины контролируют датчиком скорости вращения ротора ТДА. Охлажденную газоконденсатную смесь, выходящую из ТДА, подают в низкотемпературный сепаратор, оснащенный датчиком температуры, в котором она разделяется на осушенный холодный газ и смесь НГК и ВРИ. Холодную смесь НГК и ВРИ из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, где происходит ее дегазация и разделение на фракции. Из РЖ НГК насосным агрегатом подают в МКП, газ выветривания (ГВ) отправляют на утилизацию и/или компримируют с последующей подачей в МГП, а ВРИ направляют в цех регенерации ингибитора.

Холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй на байпас этой секции, оснащенный КР расхода газа. Этот КР изменяет соотношение потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, поступающего в компрессор ТДА. В компрессоре ТДА газ дожимают до рабочего давления и заданной температуры, необходимых для подачи его в МГП.

Существенным недостатком данного способа является то, что в случаях достижения температуры осушенного газа/НГК, поступающего/подаваемого в МГП/МКП, а также в низкотемпературном сепараторе своих предельных значений - верхнего либо нижнего, обозначенных в технологическом регламенте установки, изменение режима работы установки осуществляет оператор вручную, что снижает качество управления технологическим процессом.

Целью изобретения является повышение качества управления технологическим процессом по поддержанию температурного режима установки с применением ТДА, работающих в условиях Крайнего Севера РФ, в рамках норм и ограничений, предусмотренных технологическим регламентом установки, и снижения роли человеческого фактора при управлении технологическим процессом по поддержанию температурного режима установки.

Техническим результатом, достигаемым от реализации заявляемого способа, является повышение качества управления технологическим процессом по поддержанию температурного режима установки с применением ТДА, работающих в условиях Крайнего Севера РФ. Так же исключается человеческий фактор при принятии управленческих решений по изменению режима управления технологическим процессом с учетом норм и ограничений, предусмотренных ее технологическим регламентом. В результате обеспечивается:

- автоматическое поддержание заданного температурного режима технологических процессов установки, необходимого для ее эффективной работы;

- автоматический контроль и поддержание необходимой температуры осушенного газа/НГК, поступающих/подаваемых в МГП/МКП, с целью защиты вечномерзлых фунтов от размораживания при подземной прокладке газопроводов на Крайнем Севере РФ.

Эффективность работы установки низкотемпературной сепарации газа определяется значением перепада давления между ее входом и выходом -чем выше перепад давления, тем легче получить путем дросселирования заданную (минусовую) температуру в низкотемпературном сепараторе установки. Очевидно, что на стадии жизненного цикла месторождений с нарастающей добычей газа, характеризуемой его высоким давлением на входе установки, заданный режим ее работы удается поддерживать за счет пластового давления (энергия пласта). На стадиях жизненного цикла месторождений с постоянной и падающей добычей газа, а таких на Крайнем Севере РФ в настоящее время достаточно много, перепад давления между входом и выходом установки падает из-за снижения пластового давления. В этом случае обеспечить заданный температурный режим в низкотемпературном сепараторе установки удается за счет привлечения дополнительного источника холода. В природно-климатических условиях Крайнего Севера РФ, где до восьми месяцев стоят устойчивые холода, в качестве дополнительного источника холода зимой используют аппараты воздушного охлаждения. В теплые месяцы эксплуатации установки, с конца весны и до осени, их применение становится невозможным. В этот период роль дополнительного источника холода для установки выполняет ТДА.

Также не желательное изменение перепада давления между входом и выходом установки может возникать на любой стадии эксплуатации месторождения при изменении расхода газа, связанного с колебаниями потребления газа потребителями, при нарушении нормального режима работы фонда скважин и т.д. Так же случаются периоды с высокой температурой окружающего воздуха в летней период эксплуатации установки, которая может доходить до 32°С. Все это напрямую влияет на температурный режим работы низкотемпературного сепаратора, для нивелирования которого требуется управлять работой установки с учетом изменений текущего перепада давления и всех упомянутых факторов. Соответственно, необходимо производить коррекцию температуры газоконденсатной смеси, поступающей в низкотемпературный сепаратор, обеспечивая ее требуемые рабочие значения, что и реализуют путем управления температурой газоконденсатной смеси на выходе турбины ТДА.

В случае подземной прокладки МГП и МКП, а на Крайнем Севере используется именно этот способ прокладки МГП и МКП, предусмотрено круглогодичное охлаждение газа и газового конденсата до температуры не выше -2°С, чтобы исключить растепление многолетнемерзлых просадочных грунтов вокруг МГП и МКП. Благодаря этому значительно увеличивается надежность эксплуатации магистральных газо- и конденсатопроводов и снижается вероятность возникновения аварийных ситуаций, способных привести к серьезным экологическим, людским и материальным потерям.

Установки, расположенные на Крайнем Севере РФ, в зависимости от складывающейся ситуации по подаче добываемой продукции потребителям, реализуют один из трех возможных видов их эксплуатации:

1. Поддерживает расход добываемой газоконденсатной смеси по установке, если нет пиковых нагрузок по осушенному газу или НГК.

2. Поддерживает расход осушенного газа по установке при пиковых нагрузках по осушенному газу, например, из-за наступления сильных холодов зимой, или резкого увеличения объемов осушенного газа, необходимых для закачки в подземные хранилища летом.

3. Поддерживает расход НГК по установке при появлении пиковых нагрузок по НГК, например, из-за аварий на других промыслах или из-за необходимости увеличения поставок потребителю.

Заявляемый способ обеспечивает автоматический контроль и поддержание заданного температурного режима на установках низкотемпературной сепарации газа с ТДА, работающих в условиях Крайнего Севера РФ и реализующих третий вид эксплуатации, который предусматривает поддержание заданного расхода НГК, подаваемого в МКП. Способ также включает поддержание необходимых значений температуры осушенного газа/НГК, поступающего/подаваемого в МГП/МКП, а также температуры в низкотемпературном сепараторе при автоматическом переключении технологического процесса на новый режим работы в случае возникновения такой потребности. Это повышает надежность эксплуатации установки и эффективность процесса подготовки газа и газового конденсата к дальнему транспорту.

Указанная задача решается, а технический результат достигается за счет того, что способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с ТДА на Крайнем Севере РФ, включает предварительную очистку добываемой газоконденсатной смеси от механических примесей с частичным отделением смеси НГК и ВРИ в сепараторе первой ступени сепарации, которую отводят из кубовой части сепаратора в РЖ. Газоконденсатную смесь, выходящую из сепаратора первой ступени сепарации, разделяют на два потока и подают их для предварительного охлаждения на вход первых секций ТО «газ-газ» и ТО «газ-конденсат». Эту газоконденсатную смесь распределяют по потокам с помощью КР, установленного на входе ТО «газ-конденсат», так, чтобы обеспечить поддержание заданной температуры НГК, подаваемого в МКП. После прохождения первых секций ТО оба потока газоконденсатной смеси объединяют и подают на вход турбины ТДА, вращение которой контролируют датчиком скорости вращения ротора ТДА. Газоконденсатная смесь, проходя через турбину, охлаждается в результате адиабатического расширения и поступает в низкотемпературный сепаратор, оснащенный датчиком температуры. В этом сепараторе происходит окончательное разделение газоконденсатной смеси на осушенный холодный газ и смесь НГК и ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ. В РЖ происходит дегазация и разделение на фракции поступившей смеси. Далее, из РЖ НГК насосным агрегатом подают в МКП, ГВ отправляют на утилизацию и/или компримируют и направляют в МГП, а ВРИ отправляют в цех регенерации ингибитора.

Холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй на байпас этой секции, оснащенный КР расхода газа. Этот КР изменяет соотношение потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, поступающего в компрессор ТДА, который дожимает газ до рабочего давления и заданной температуры, после чего его подают в МГП.

Автоматизированная система управления технологическими процессами (АСУ ТП) с момента запуска установки в эксплуатацию поддерживает заданный расход НГК, подаваемый в МКП. Для этого АСУ ТП использует заданные значения уставок контролируемых параметров и границы допустимых отклонений значения этих параметров от их уставок. И как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных ему границ, нарушающий технологический регламент работы установки, АСУ ТП изменяет на один шаг значение уставки давления Рвх. добываемой газоконденсатной смеси на входе установки на величину ΔРвх. Изменение этой уставки разрешено в интервале, определяемом неравенством Pmin≤Рвх.≤Pmax, где Pmin минимально допустимое, а Pmax максимально допустимое значение уставки давления газоконденсатной смеси на входе установки. Саму величину ΔРвх. назначают из соотношения ΔРвх.=(Pmax - Pmin)/n, где n - число разрешенных шагов изменения уставки Рвх.. Изменение уставки Рвх. АСУ ТП осуществляет в направлении, которое позволяет устранить возникшее нарушение, и при этом АСУ ТП одновременно следит за тем, чтобы рабочий орган КР, управляющий давлением на входе установки, находился в рамках допустимых границ его перемещения. Изменив значение уставки на один шаг АСУ ТП удерживает режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально. И если все остальные контролируемые параметры технологического процесса за это время вернутся в пределы установленных для них границ, то АСУ ТП фиксирует в своей базе данных (БД) это значение как новую уставку давления добываемой газоконденсатной смеси на входе в установку для поддержания расхода НГК, подаваемого в МКП. Одновременно АСУ ТП генерирует сообщение оператору об автоматической смене режима работы установки и его новых характеристиках, и далее АСУ ТП реализует этот режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении.

Перед запуском установки в эксплуатацию обслуживающий персонал вводит в БД АСУ ТП значение Рвх. - уставка давления на входе в установку, и границы интервала ее допустимых изменений от Pmin до Pmax. Так же вводят значение уставки расхода НГК, подаваемого на вход МКП, и границы интервала допустимых отклонений фактического расхода QНГК НГК от его уставки, заданных неравенством Qmin≤QНГК≤Qmax, где Qmin - минимально допустимое значение, a Qmax - максимально допустимое значение расхода НГК, подаваемого в МКП.

Вводят значение уставки температуры в низкотемпературном сепараторе и границы интервала допустимых отклонений фактической температуры T°СНС от нее, заданных неравенством T°Cmin_НС≤Т°СНС≤Т°Cmax_НС, где Т°Cmin_НС - минимально допустимое значение, а Т°Cmax_НС - максимально допустимое значение температуры в низкотемпературном сепараторе.

Вводят уставку температуры НГК, поступающего в МКП, и границы интервала допустимых отклонений фактической температуры Т°СНГК от нее, заданных неравенством T°Cmin_НГК≤Т°CНГК≤T°Cmax_НГК, где Т°Cmin_НГК - минимально допустимое значение, а Т°Cmax_НГК - максимально допустимое значение температуры НГК, подаваемого в МКП.

Вводят уставку температуры осушенного газа, подаваемого в МГП, и границы интервала допустимых отклонений фактической температуры Т°СОГ от нее, заданных неравенством T°Cmin_ОГ≤Т°СОГ≤Т°Cmax_ОГ, где T°Cmin_ОГ - минимально допустимое значение, а Т°Cmax_ОГ - максимально допустимое значение температуры осушенного газа, подаваемого в МГП.

Устанавливают границы допустимых перемещений SКР 2 рабочего органа КР, поддерживающего давление добытой газоконденсатной смеси на входе установки, от минимального допустимого открытого положения Smin_КР 2 до полностью открыт.

Устанавливают границы предельно допустимого перемещения SКР 5 рабочего органа КР, установленного на выходе сепаратора первой ступени и поддерживающего расход осушенного газа, подаваемого в МГП, от минимального допустимого открытого положения Smin_КР 5 до полностью открыт.

Устанавливают границы предельно допустимого перемещения SКР 12 рабочего органа КР, управляющего скоростью вращения ротора ТДА и установленного на выходе компрессора ТДА, от минимального допустимого открытого положения Smin_КР 12 до полностью открыт.

После введения указанных данных в БД АСУ ТП осуществляют запуск установки в эксплуатацию, и все технологические процессы в ней ведет АСУ ТП. Для этого она использует четыре ПИД-регулятора и один каскад из двух ПИД-регуляторов, построенных на ее базе. Каждый из этих четырех ПИД-регуляторов с помощью подсоединенных к ним КР, управляет своим параметром.

Каскад из двух ПИД-регуляторов работает следующим образом. Первый ПИД-регулятор, сравнивая фактическую температуру в низкотемпературном сепараторе с ее уставкой, формирует сигнал оперативного значения уставки скорости вращения ротора ТДА, необходимой для удержания требуемой технологическим регламентом температуры в низкотемпературном сепараторе, и подает ее на вход задания второго ПИД-регулятора каскада. Второй ПИД-регулятор, сравнивая фактическую скорость вращения ротора ТДА с оперативной уставкой его скорости вращения, формирует сигнал управления подсоединенному к нему КР, который и задает необходимую скорость вращения ротора ТДА.

АСУ ТП формирует сообщение оператору установки для принятия решения по изменению режима работы кустов газодобывающих скважин, если в режиме изменения уставки Рвх. с помощью КР, установленного на входе установки и управляющего давлением добытой газоконденсатной смеси на ее входе, будет выявлено что его рабочий орган перешел в состояние полностью открыт или достиг минимально допустимого открытого положения Smin_кр 2, либо уставка Рвх. вышла за одну из границ ее допустимых изменений.

На фиг. 1 приведена принципиальная технологическая схема установки низкотемпературной сепарации газа, используемых на Крайнем Севере РФ и в ней использованы следующие обозначения:

1 - входная линия установки;

2 - КР поддержания давления газоконденсатной смеси на входе установки;

3 - датчик давления добываемой газоконденсатной смеси на входе установки;

4 - сепаратор первой ступени сепарации;

5 - КР расхода НГК, подаваемого в МГП;

6 - КР расхода газоконденсатной смеси, проходящий через ТО «газ-конденсат» 10;

7 - АСУ ТП установки;

8 - ТО «газ-газ»;

9 - КР расхода осушенного газа через байпас второй секции ТО «газ-газ»;

10 - ТО «газ-конденсат»;

11 - РЖ;

12 - КР управления скоростью вращения ротора ТДА;

13 - датчик температуры осушенного газа, поступающий в МГП;

14-ТДА;

15 - датчик скорости вращения ротора ТДА;

16 - датчик температуры в низкотемпературном сепараторе 17;

17 - низкотемпературный сепаратор;

18 - датчик расхода НГК, подаваемого в МКП;

19 - датчик температуры НГК, подаваемого в МКП;

20 - насосный агрегат.

На фиг. 2 приведена структурная схема автоматического управления температурным режимом установки. В ней использованы следующие обозначения:

21 - сигнал давления газоконденсатной смеси на входе установки, поступающий с датчика 3;

22 - сигнал уставки давления газоконденсатной смеси на входе установки;

23 - сигнал температуры осушенного газа, подаваемого в МГП, поступающий с датчика температуры 13;

24 - сигнал уставки температуры осушенного газа, подаваемого в МГП;

25 - сигнал температуры НГК, подаваемого в МГП, поступающий с датчика температуры 19;

26 - сигнал уставки температуры НГК, подаваемого в МКП;

27 - сигнал расхода НГК, подаваемого в МКП, поступающий с датчика 18;

28 - сигнал уставки расхода НГК, подаваемого в МГП;

29 - сигнал скорости вращения ротора ТДА 15, поступающий с датчика 15;

30 - сигнал температуры в низкотемпературном сепараторе 17, поступающий с датчика температуры 16;

31 - сигнал уставки температуры в низкотемпературном сепараторе 17;

32 - ПИД-регулятор поддержания давления добываемой газоконденсатной смеси на входе установки;

33 - ПИД-регулятор поддержания температуры осушенного газа, подаваемого в МГП;

34 - ПИД-регулятор поддержания температуры НГК, подаваемого в МГП;

35 - ПИД-регулятор поддержания расхода НГК, подаваемого в МКП;

36 - ПИД-регулятор, формирующий оперативное значение уставки скорости вращения ротора ТДА, необходимой для поддержания заданной температуры в низкотемпературном сепараторе 17;

37 - ПИД-регулятор поддержания скорости вращения ротора ТДА 14;

38 - сигнал управления КР 2;

39 - сигнал управления КР 9;

40 - сигнал управления КР 6;

41 - сигнал управления КР 5;

42 - сигнал управления КР 12.

ПИД-регуляторы 32, 33, 34, 35, 36 и 37 реализованы на базе АСУ ТП 7.

Способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с ТДА на Крайнем Севере РФ реализуют следующим образом.

Добытая газоконденсатная смесь через входную линию 1 установки, оснащенной датчиком давления 3 и КР 2, поступает на вход сепаратора первой ступени сепарации 4, в котором происходит первичное очищение газоконденсатной смеси от механических примесей, частичное отделение НГК и ВРИ, смесь которых, по мере накопления в нижней части сепаратора 4, отводят в РЖ 11. Частично очищенная от капельной влаги и пластовой жидкости газоконденсатная смесь с выхода сепаратора первой ступени сепарации 4 проходит через КР 5, регулирующий расход газоконденсатной смеси по установке таким образом, чтобы расход НГК, подаваемого в МКП, не выходил за границы допустимых отклонений относительно уставки, заданной диспетчерской службой Предприятия. Газоконденсатную смесь, выходящую из КР 5 разделяют на два потока и подают на входы первых секций ТО 8 «газ-газ» и ТО 10 «газ-конденсат» для предварительного охлаждения. При этом на вход ТО 10 «газ-конденсат» газоконденсатная смесь поступает через КР 6, который АСУ ТП использует для поддержки необходимой температуры НГК, подаваемого в МКП. Далее потоки газоконденсатной смеси с выходов первых секций ТО 8 «газ-газ» и ТО 10 «газ-конденсат» объединяют и подают на вход турбины ТДА 14. Проходя рабочее колесо турбины ТДА 14 газоконденсатная смесь адиабатически расширяется, в результате чего ее температура понижается до значения, близкого к предусмотренному технологическим режимом низкотемпературного сепаратора. Возникающее отклонение фактической температуры от значения, предусмотренного технологическим регламентом установки для низкотемпературного сепаратора 17 АСУ ТП компенсирует в реальном масштабе времени изменяя скорость вращения ротора ТДА 14 путем регулирования расхода осушенного газа через его компрессор, используя для этого КР 12, установленный на выходе ТДА 14.

С выхода турбины ТДА 14 охлажденную газоконденсатную смесь подают в низкотемпературный сепаратор 17, оснащенный датчиком температуры 16. В сепараторе происходит окончательное отделение газа от НГК и ВРИ, смесь которых, по мере ее накопления в нижней части сепаратора 17, отводят через вторую секцию ТО 10 «газ-конденсат» в РЖ 11. Осушенный и охлажденный газ с выхода низкотемпературного сепаратора 17 разделяют на два потока, один из которых подают во вторую секцию ТО 8 «газ-газ», а второй направляют в байпас этой секции. Байпас оснащен КР 9, с помощью которого АСУ ТП управляет расходом проходящего через него охлажденного газа, поступающего от низкотемпературного сепаратора 17, регулируя таким образом температуру газа, поступающего на вход компрессора ТДА 14. Благодаря этому АСУ ТП поддерживает заданную температуру компримированного газа, поступающего с выхода компрессора ТДА 14 в МГП.

Отведенная в РЖ 11 из сепараторов 4 и 17 смесь НГК и ВРИ подвергается разделению на компоненты и дегазации. Поток выделенного газа (ГВ) из РЖ 11 отправляют на утилизацию или компримируют и подают в МГП. НГК отводят при помощи насосного агрегата 20 в МКП и транспортируют потребителям, а поток ВРИ отправляют на регенерацию в цех регенерации ингибитора установки.

Реализация данного способа решает следующие задачи: а) Автоматическое поддержание давления газоконденсатной смеси на входе установки. Для этого АСУ ТП 7 использует ПИД-регулятор 32, на вход обратной связи PV которого подает сигнал 21 - значение фактического давления на входе установки, измеряемое датчиком 3, установленным на входе в сепаратор 4. Одновременно АСУ ТП 7 на вход задания SP этого же ПИД-регулятора подает сигнал 22 - значение уставки давления Рвх. на входе установки. В результате их обработки ПИД-регулятор 32 на своем выходе CV формирует сигнал 38, управляющий степенью открытия/закрытия КР 2, обеспечивающей поддержание давления на входе установки практически равным значению уставки Рвх..

б) Поддержание заданной температуры осушенного газа, подаваемого в МГП. Ее АСУ ТП решает управляя расходом газа, проходящего через вторую секцию ТО 8 «газ-газ». Для этого часть потока холодного осушенного газа, отводимого от низкотемпературного сепаратора 18, направляют через байпас этой секции, на котором установлен КР 9. Задание на изменение положения исполнительного органа КР 9 формирует ПИД-регулятор 33 поддержания температуры осушенного газа, поступающего в МГП. Для этого АСУ ТП 7 на вход обратной связи PV ПИД-регулятора 33 подает сигнал 23 - температура осушенного газа Тмгп, поступающего в МГП, значение которой измеряют с помощью датчика температуры 13, установленного на входе в МГП. Одновременно на вход задания SP ПИД-регулятора 33 АСУ ТП 7 подает сигнал 24 - уставка температуры осушенного газа, поступающего в МГП. В результате обработки этих сигналов на выходе CV ПИД-регулятор 33 формирует управляющий сигнал 39 для КР 9. Если температура в МГП должна быть повышена\понижена, количество проходящего через байпас холодного газа будет уменьшено\увеличено. В результате температура осушенного газа, поступающего в МГП, будет соответствовать температуре, заданной технологическим регламентом установки.

в) Поддержание заданной температуры НГК, подаваемого в МКП. Ее АСУ ТП решает управляя с помощью КР 6 расходом газоконденсатной смеси, проходящей через первую секцию ТО 10 «газ-конденсат». Задание на изменение положения рабочего органа КР 6 формирует ПИД-регулятор 34. Для этого АСУ ТП 7 на вход обратной связи PV ПИД-регулятора 34 подает сигнал 25 - значение температуры НГК Т°СНГК, подаваемого на вход МКП, фиксируемое датчиком 19, установленным на входе в МКП. Одновременно АСУ ТП 7 на вход задания SP этого ПИД-регулятора подает сигнал 26 - уставка температуры НГК, которую необходимо поддерживать на выходе установки (на входе МКП). В результате обработки этих сигналов ПИД-регулятор 34 формирует на своем выходе CV управляющий сигнал 40 для КР 6. Если температура в МКП должна быть повышена\понижена, количество газоконденсатной смеси, проходящей через первую секцию ТО 10 «газ-конденсат», будет увеличено\уменьшено. Соответственно температура НГК, поступающего в МКП, будет соответствовать заданной технологическим регламентом установки.

г) Автоматическое поддержание заданного расхода НГК, подаваемого в МКП. Для этого АСУ ТП 7 использует ПИД-регулятора 35, на вход обратной связи PV которого подает сигнал 27 - значение фактического расхода НГК, подаваемого в МКП, измеряемого с помощью датчика 18, установленного на входе в МКП. Одновременно АСУ ТП 7 на вход задания SP ПИД-регулятора 35 подает сигнал 28 - уставка расхода НГК, подаваемого в МКП. Ее величину устанавливает диспетчерская служба газодобывающего Предприятия. Сравнивая эти сигналы ПИД-регулятор 35 на своем выходе CV формирует сигнал 41, который управляет степенью открытия/закрытия КР 5, поддерживая установленный заданием расход НГК, подаваемого в МКП.

д) Автоматическое поддержание заданной температуры газоконденсатной смеси, поступающей в низкотемпературный сепаратор 17 с выхода турбины ТДА 14. Ее АСУ ТП решает путем управления скоростью вращения ротора ТДА 14, изменяя расход осушенного холодного газа через его компрессор с помощью КР 12, установленного на выходе ТДА 14.

Скоростью вращения ротора ТДА 14 управляет ПИД-регулятор 37. Для этого АСУ ТП 7 на вход его обратной связи PV подает сигнал 29 - текущее значение скорости вращения VТДА ротора ТДА 14, измеряемой датчиком 15. Одновременно на вход задания SP ПИД-регулятора 37 подают сигнал оперативного значения уставки Vуст_ТДА скорости вращения ротора ТДА 14, которую необходимо поддерживать в данный момент, чтобы температура в низкотемпературном сепараторе 17 соответствовала ее уставке. Оперативное значение уставки Vуст_ТДА формирует ПИД-регулятор 36 на своем выходе CV в результате обработки сигналов - значение фактической температуры в низкотемпературном сепараторе, регистрируемой датчиком 16, и уставки температуры в нем. Текущее значение этой температуры - сигнал 30, АСУ ТП 7 подает на вход обратной связи PV ПИД-регулятора 36, а сигнал 31 уставки температуры в низкотемпературном сепараторе она подает на его вход SP.

В случае, когда температуру в низкотемпературном сепараторе 17 необходимо понизить, КР 12 приоткрывают, и тем самым уменьшают нагрузку на компрессор ТДА 14. Это приводит к увеличению скорости вращения его ротора и к снижению температуры газоконденсатной смеси на выходе турбины ТДА 14, т.е. на входе в низкотемпературный сепаратор 17. При необходимости повышения температуры в низкотемпературном сепараторе 17, КР 12 прикрывают, что приводит к понижению скорости вращения его ротора. В результате температура газоконденсатной смеси на выходе турбины ТДА 14, т.е. на входе в низкотемпературный сепаратор 17 повышается.

Перед запуском установки в работу обслуживающий персонал задает и вводит в БД АСУ ТП 7 ряд необходимых параметров, среди которых уставки, границы допустимых отклонений значений контролируемых параметров от их уставок, а также границы допустимых перемещений рабочих органов КР.

Вводят уставку Рвх. - давление газоконденсатной смеси на входе установки и границы ее допустимых изменений, которые задают в виде неравенства

где Pmin минимальное, а Pmax максимальное значение уставки давление газоконденсатной смеси на входе установки. При этом изменение текущего значения уставки Рвх. АСУ ТП 7 производит только в случае необходимости и пошагово, на величину ΔРвх., которую назначают из соотношения ΔРвх.=(Pmax - Pmin)/n, где n - число разрешенных шагов изменения уставки Рвх.

Одновременно вводят ограничения на положение рабочего органа КР 2, которое может варьироваться от полностью открыт до прикрыт до строго заданного, нижнего значения Smin_КР2. Интервал его допустимых перемещений задают в виде неравенства Smin_КР2≤SKP2, где SКР2 текущее положение рабочего органа КР 2. В результате АСУ ТП 7 осуществляет управление пошаговым изменением уставки Рвх. давления газоконденсатной смеси на входе установки с помощью КР 2, соблюдая одновременно требования системы из двух неравенств

Вводят уставку расхода НГК, подаваемого в МКП, а допустимые отклонения текущего значения его расхода QНГК относительно уставки задают в виде неравенства

где Qmin минимальное, a Qmax максимальное значение расхода НГК, подаваемого МКП.

Одновременно вводят ограничения на положение рабочего органа КР 5, которое может варьироваться от полностью открыт до прикрыт до строго заданного, нижнего значения Smin_КР5. Интервал его допустимых перемещений задают в виде неравенства Smin_КР 5≤SКР 5, где SКР 5 текущее положение рабочего органа КР 5.

Соответственно, АСУ ТП 7 ведет управление процессом подачи НГК, подаваемого в МКП с учетом допустимых отклонений расхода от уставки и ограничений на работу КР 5, т.е. соблюдает требование одновременного соответствия системе из двух неравенств

Вводят уставку температуры осушенного газа, поступающего в МГП, а границы допустимых отклонений его текущей температуры Т°СОГ относительно уставки задают в виде неравенства

где Т°Cmin_ОГ - минимально допустимое, а Т°Cmax_ОГ - максимально допустимое значение температуры осушенного газа.

Вводят уставку температуры НГК, поступающего в МКП, а границы допустимых отклонений его текущей температуры Т°СНГК относительно уставки задают неравенством

где T°Cmin_НГК - минимально допустимое, а Т°Cmax_НГК - максимально допустимое значение температуры НГК.

Вводят уставку температуры в низкотемпературном сепараторе, а границы допустимых отклонений ее текущего значения Т°СНС относительно уставки задают неравенством

где, Т°Cmin_НС - минимально допустимое, а Т°Cmax_НС - максимально допустимое значение температуры в низкотемпературном сепараторе.

Задают границы допустимых изменений скорости вращения ротора VТДА ТДА 14 в виде неравенства

где Vmin минимально допустимая скорости вращения, a Vmax максимально допустимая скорость вращения ротора ТДА.

Одновременно ограничивают положение рабочего органа КР 12, которое может изменяться от полностью открыт до прикрыт до строго заданного, нижнего значения Smin_KP 12. Интервал его допустимых перемещений задают в виде неравенства Smin_КР 12≤SКР 12, где SКР 12 текущее положение рабочего органа КР 12.

Соответственно, АСУ ТП 7 ведет управление работой ТДА с учетом этого условия и ограничений на работу КР 12, т.е. соблюдает требование одновременного соответствия системе из двух неравенств

В процессе эксплуатации установки, положение рабочих органов КР 6 и КР 9, в отличие от положения КР 2, КР 5 и КР 12, может изменяться от полностью открыт до полностью закрыт.

Обслуживающий персонал перед запуском установки в эксплуатацию также вводит в БД АСУ ТП 7 первоначальные значения степени открытия КР 2, КР 5, КР 6, КР 9 и КР 12.

При запуске установки в работу АСУ ТП 7 в реальном режиме времени осуществляет контроль положения рабочих органов КР 2, КР 5, КР 6, КР 9 и КР 12, а также расхода НГК, подаваемого в МГП, с помощью датчика расхода 18, температуры в низкотемпературном сепараторе 17 с помощью датчика 16, температуры осушенного газа/НГК, поступающих/подаваемых в МГП/МКП, с помощью датчиков 13 и 19, соответственно.

Контролируя указанные параметры АСУ ТП 7 ведет управление технологическим процессом с учетом указанных выше ограничений и поддерживает стабильным выполнение задания по расходу НГК - базовый (основной) режим. Если в процессе работы не удастся достичь заданного расхода НГК, подаваемого в МКП, или заданной температуры в низкотемпературном сепараторе 17, или заданной температуры осушенного газа/НГК, поступающего/подаваемого в МГП/МКП или скорости вращения ротора VТДА выйдет за допустимые границы, либо рабочий орган КР 5 или КР 6 или КР 9 или КР 12 перейдет в одно из своих крайних положений, то АСУ ТП 7 автоматически переводит установку на следующий режим работы. Этот переход предусматривает изменение уставки давления газоконденсатной смеси на входе установки Рвх. на один шаг в рамках допустимых для нее изменений. Этот переход на новый режим АСУ ТП 7 реализует с помощью ПИД-регулятора 32 и управляемого им КР 2 в рамках ограничений, установленных системой неравенств (1), изменив значение первоначально уставки Рвх. на один шаг. Одновременно АСУ ТП 7 формирует сообщение оператору установки об автоматическом переводе установки на следующий режим работы.

Данный режим АСУ ТП 7 реализует, увеличив/уменьшив значение уставки Рвх., в зависимости от сложившейся ситуации в ту или иную сторону, до значения

Это новое значение уставки АСУ ТП 7 подает в виде сигнала 22 на вход SP ПИД-регулятора 32. Сравнивая ее значение с фактическим давлением на входе установки, поступающим от датчика 3 ПИД-регулятор 32 на своем выходе CV формирует управляющий сигнал 38 и задает соответствующее значение степени открытия/закрытия КР 2. Это ведет к изменению давления добываемой газоконденсатной смеси на входе в установку, что вызывает изменение перепада давления на турбине ТДА 14. Благодаря этому произойдет, повышение/понижение температуры в низкотемпературном сепараторе 17, что, в свою очередь, приведет к устранению возникшего отклонения - повышению/понижению расхода осушенного газа, поступающего в МГП или температуры газа/НГК, поступающих в МГП/МКП.

Корректировку значения уставки давления на входе установки Рвх. АСУ ТП 7 производит пошагово, в зависимости от направления возникшего нарушения и с учетом инерционности технологических процессов установки. Количество шагов n, перекрывающих весь интервал допустимых изменений уставки давления на входе установки Рвх., как правило, назначают равным 10, по 5 шагов в каждую сторону от первоначально заданного значения. При этом на каждом шаге АСУ ТП 7 реализует режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально. В частности, для установок Заполярного нефтегазоконденсатного месторождения требуется время τconst для завершения переходных процессов порядка 10 минут. Если при реализации первого или очередного шага удается устранить возникшее нарушение в ходе технологического процесса - восстановить заданный расход осушенного газа, поступающего в МГП, или заданную температуру в низкотемпературном сепараторе 17, или заданную температуру осушенного газа/НГК, поступающего/подаваемого в МГП/МКП, либо вернуть рабочий орган КР 5 или КР 6 или КР 9 или КР 12 в его рабочий диапазон положений, либо вернуть в рабочий диапазон скорость вращения ротора ТДА, то АСУ ТП 7 продолжает работать с этим новым значением уставки, зафиксировав ее значение в своей БД в качестве задания. В противном случае АСУ ТП 7 продолжит поиск, изменив значение уставки Рвх. еще на один шаг.

Такой режиме коррекции уставки Рвх. с помощью КР 2 позволяет АСУ ТП 7 многократно возвращаться к ранее реализованным режимам работы, в том числе и к первоначальному.

Если в режиме коррекции уставки Рвх. с помощью КР 2 будет достигнута одна из границ ее допустимых изменений, Pmax или Pmin, либо рабочий орган КР 2 перейдет в состояние полностью открыт или Smin_КР2, но расход НГК, подаваемого в МКП, или температура осушенного газа/НГК, поступающего/подаваемого в МГП/МКП, или температура в низкотемпературном сепараторе не войдет в рамки заданных ограничений, АСУ ТП 7 формирует об этом сообщение оператору установки для принятия решения по изменению режима работы кустов газодобывающих скважин.

Настройку используемых ПИД-регуляторов проводит обслуживающий персонал в момент запуска системы в работу под конкретный режим работы установки согласно методу, изложенному, например, в «Энциклопедии АСУ ТП», п. 5.5, ПИД-регулятор, ресурс:

http://www.bookasutp.ru/Chapter5_5.aspx#HandTuning.

Способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с ТДА на Крайнем Севере РФ реализован в ПАО «Газпром» ООО «Газпром добыча Ямбург» на Заполярном нефтегазоконденсатном месторождении на УКПГ 1 В и УКПГ 2 В. Результаты эксплуатации показали его высокую эффективность. Заявляемое изобретение может широко использоваться и на других действующих и вновь осваиваемых газоконденсатных месторождениях, расположенных в районах Крайнего РФ. Применение данного способа позволяет автоматически поддержать температурный режим на установках в рамках технологических норм и ограничений, предусмотренных их технологическими регламентами, благодаря чему появляется возможность:

- автоматически удерживать в установленных рамках ход технологических процессов установки, обеспечивая ее эффективную работу с учетом динамики текущих значений внешних и внутренних параметров;

- осуществлять контроль и поддержание заданного расхода НГК, поступающего в МКП, а также температуры осушенного газа/НГК, поступающих/подаваемых в МГП/МКП, с целью защиты вечномерзлых грунтов от размораживания при подземной прокладке газо- и конденсатопроводов на Крайнем Севере РФ.

Похожие патенты RU2783036C1

название год авторы номер документа
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С ТУРБОДЕТАНДЕРНЫМИ АГРЕГАТАМИ НА КРАЙНЕМ СЕВЕРЕ РФ 2022
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2783033C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С ТУРБОДЕТАНДЕРНЫМИ АГРЕГАТАМИ НА СЕВЕРЕ РФ 2022
  • Моисеев Виктор Владимирович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2781238C1
СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА НА УСТАНОВКАХ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С АППАРАТАМИ ВОЗДУШНОГО ОХЛАЖДЕНИЯ НА КРАЙНЕМ СЕВЕРЕ РФ 2022
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2783037C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С АППАРАТАМИ ВОЗДУШНОГО ОХЛАЖДЕНИЯ НА КРАЙНЕМ СЕВЕРЕ РФ 2022
  • Моисеев Виктор Владимирович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2783034C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА, РАБОТАЮЩЕЙ В УСЛОВИЯХ КРАЙНЕГО СЕВЕРА РФ 2022
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2782988C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА, РАБОТАЮЩЕЙ В УСЛОВИЯХ СЕВЕРА РФ 2022
  • Моисеев Виктор Владимирович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2781231C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УСТАНОВКОЙ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С АППАРАТАМИ ВОЗДУШНОГО ОХЛАЖДЕНИЯ НА СЕВЕРЕ РФ 2022
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2783035C1
СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА УСТАНОВКИ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА ПУТЕМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ, АППАРАТАМИ ВОЗДУШНОГО ОХЛАЖДЕНИЯ И/ИЛИ ИХ КОМБИНАЦИЕЙ 2020
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Партилов Михаил Михайлович
  • Хасанов Олег Сайфиевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
  • Железный Сергей Петрович
  • Дяченко Илья Александрович
  • Линник Александр Иванович
RU2756965C1
СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ПЛОТНОСТИ НЕСТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА, ПОДАВАЕМОГО В МАГИСТРАЛЬНЫЙ КОНДЕНСАТОПРОВОД, С ПРИМЕНЕНИЕМ ТУРБОДЕТАНДЕРНОГО АГРЕГАТА, НА УСТАНОВКАХ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА В РАЙОНАХ КРАЙНЕГО СЕВЕРА 2018
  • Николаев Олег Александрович
  • Арабский Анатолий Кузьмич
  • Завьялов Сергей Владимирович
  • Ефимов Андрей Николаевич
  • Хасанов Олег Сайфиевич
  • Зуев Олег Валерьевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
  • Железный Сергей Петрович
RU2697208C1
СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ УСТАНОВКИ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА ТУРБОДЕТАНДЕРНЫМИ АГРЕГАТАМИ В УСЛОВИЯХ СЕВЕРА РФ 2020
  • Ефимов Андрей Николаевич
  • Арабский Анатолий Кузьмич
  • Агеев Алексей Леонидович
  • Партилов Михаил Михайлович
  • Макшаев Михаил Николаевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
  • Дяченко Илья Александрович
  • Линник Александр Иванович
RU2756966C1

Иллюстрации к изобретению RU 2 783 036 C1

Реферат патента 2022 года СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА НА УСТАНОВКАХ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА С ТУРБОДЕТАНДЕРНЫМИ АГРЕГАТАМИ НА КРАЙНЕМ СЕВЕРЕ РФ

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с турбодетандерными агрегатами (ТДА) на Крайнем Севере РФ включает предварительную очистку добытой газоконденсатной смеси от механических примесей с частичным отделением смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени сепарации, которую отводят из кубовой части сепаратора в разделитель жидкостей (РЖ), а газоконденсатную смесь, выходящую из сепаратора первой ступени сепарации, разделяют на два потока и подают их для предварительного охлаждения на вход первых секций рекуперативных теплообменников (ТО) «газ-газ» и «газ-конденсат». Газоконденсатную смесь распределяют по потокам с помощью крана-регулятора (КР), установленного на входе ТО «газ-конденсат», так чтобы обеспечить поддержание заданной температуры НГК, подаваемого в магистральный конденсатопровод (МКП). После прохождения первых секций ТО оба потока газоконденсатной смеси объединяют и подают на вход турбины ТДА, вращение которой контролируют датчиком скорости вращения ротора ТДА, и газоконденсатная смесь, проходя через турбину, охлаждается и поступает в низкотемпературный сепаратор, оснащенный датчиком температуры, в котором ее разделяют на осушенный холодный газ и смесь НГК и ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, где происходит ее дегазация и разделение на фракции, и далее из РЖ НГК насосным агрегатом подают в МКП, газ выветривания отправляют на утилизацию и/или компримируют и направляют в магистральный газопровод (МГП), ВРИ отправляют в цех регенерации ингибитора. Холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй - на байпас этой секции, оснащенный КР расхода газа, и этот КР изменяет соотношение потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, поступающего в компрессор ТДА, который дожимает газ до рабочего давления и заданной температуры, после чего его подают в МГП. Автоматизированная система управления технологическими процессами (АСУ ТП) с момента запуска установки в эксплуатацию поддерживает заданный расход НГК, подаваемый в МКП, используя для этого заданные значения уставок контролируемых параметров и границы допустимых отклонений их значения от уставок. Как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных ему границ, нарушающий технологический регламент работы установки, АСУ ТП изменяет на один шаг значение уставки давления Рвх. добываемой газоконденсатной смеси на входе установки на величину ΔРвх. в интервале, определяемом неравенством Pmin≤Рвх.≤Pmax, где Pmin минимальное, а Pmax максимальное значение уставки давления газоконденсатной смеси на входе установки. Величину ΔРвх. назначают из соотношения ΔРвх.=(Pmax - Pmin)/n, где n – число разрешенных шагов изменения уставки Рвх., и это изменение уставки АСУ ТП осуществляет в направлении, которое позволяет устранить возникшее нарушение. Одновременно АСУ ТП следит за тем, чтобы рабочий орган КР, управляющий давлением на входе установки, находился в рамках допустимых границ его перемещения, и удерживает режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально. Если остальные контролируемые параметры технологического процесса за это время вернутся в пределы установленных для них границ, то АСУ ТП фиксирует в своей базе данных (БД) это значение как новую уставку давления добываемой газоконденсатной смеси на входе в установку для поддержания расхода НГК, подаваемого в МКП, и генерирует сообщение оператору об автоматической смене режима работы установки и его новых характеристиках, и далее АСУ ТП реализует этот режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении. Технический результат заключается в повышении надежности эксплуатации установки и эффективности процесса подготовки газа и газового конденсата к дальнему транспорту. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 783 036 C1

1. Способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с турбодетандерными агрегатами – ТДА на Крайнем Севере РФ, включающий предварительную очистку добытой газоконденсатной смеси от механических примесей с частичным отделением смеси нестабильного газового конденсата – НГК и водного раствора ингибитора – ВРИ в сепараторе первой ступени сепарации, которую отводят из кубовой части сепаратора в разделитель жидкостей – РЖ, а газоконденсатную смесь, выходящую из сепаратора первой ступени сепарации, разделяют на два потока и подают их для предварительного охлаждения на вход первых секций рекуперативных теплообменников, далее ТО, «газ-газ» и «газ-конденсат», при этом газоконденсатную смесь распределяют по потокам с помощью крана-регулятора – КР, установленного на входе ТО «газ-конденсат», так чтобы обеспечить поддержание заданной температуры НГК, подаваемого в магистральный конденсатопровод – МКП, а после прохождения первых секций ТО оба потока газоконденсатной смеси объединяют и подают на вход турбины ТДА, вращение которой контролируют датчиком скорости вращения ротора ТДА, и газоконденсатная смесь, проходя через турбину, охлаждается и поступает в низкотемпературный сепаратор, оснащенный датчиком температуры, в котором ее разделяют на осушенный холодный газ и смесь НГК и ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, где происходит ее дегазация и разделение на фракции, и далее из РЖ НГК насосным агрегатом подают в МКП, газ выветривания отправляют на утилизацию и/или компримируют и направляют в магистральный газопровод – МГП, ВРИ отправляют в цех регенерации ингибитора, а холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй - на байпас этой секции, оснащенный КР расхода газа, и этот КР изменяет соотношение потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, поступающего в компрессор ТДА, который дожимает газ до рабочего давления и заданной температуры, после чего его подают в МГП, отличающийся тем, что автоматизированная система управления технологическими процессами – АСУ ТП с момента запуска установки в эксплуатацию поддерживает заданный расход НГК, подаваемый в МКП, используя для этого заданные значения уставок контролируемых параметров и границы допустимых отклонений их значения от уставок, и как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных ему границ, нарушающий технологический регламент работы установки, АСУ ТП изменяет на один шаг значение уставки давления Рвх. добываемой газоконденсатной смеси на входе установки на величину ΔРвх. в интервале, определяемом неравенством Pmin≤Рвх.≤Pmax, где Pmin - минимальное, а Pmax - максимальное значение уставки давления газоконденсатной смеси на входе установки, а величину ΔРвх. назначают из соотношения ΔРвх.=(Pmax - Pmin)/n, где n – число разрешенных шагов изменения уставки Рвх., и это изменение уставки АСУ ТП осуществляет в направлении, которое позволяет устранить возникшее нарушение, и одновременно АСУ ТП следит за тем, чтобы рабочий орган КР, управляющий давлением на входе установки, находился в рамках допустимых границ его перемещения, и удерживает режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально, и если остальные контролируемые параметры технологического процесса за это время вернутся в пределы установленных для них границ, то АСУ ТП фиксирует в своей базе данных – БД это значение как новую уставку давления добываемой газоконденсатной смеси на входе в установку для поддержания расхода НГК, подаваемого в МКП, и генерирует сообщение оператору об автоматической смене режима работы установки и его новых характеристиках, и далее АСУ ТП реализует этот режим эксплуатации установки, в противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении.

2. Способ по п. 1, отличающийся тем, что перед запуском установки в эксплуатацию обслуживающий персонал вводит в БД АСУ ТП значение уставки давления Рвх. на входе в установку и границы интервала ее допустимых изменений от Pmin до Pmax, вводит значение уставки расхода НГК, подаваемого в МКП, и границы интервала допустимых отклонений фактического расхода QНГК НГК от нее, заданных неравенством Qmin≤QНГК≤Qmax, а также вводит уставку температуры в низкотемпературном сепараторе и границы интервала допустимых отклонений фактической температуры Т°СНС от нее, заданных неравенством Т°Cmin_НС≤Т°СНС≤T°Cmax_НС, вводит уставку температуры НГК, поступающего в МКП, и границы интервала допустимых отклонений фактической температуры Т°СНГК от нее, заданных неравенством T°Cmin_НГК≤Т°СНГК≤T°Cmax_НГК, вводит уставку температуры осушенного газа, подаваемого в МГП, и границы интервала допустимых отклонений фактической температуры Т°СОГ от нее, заданных неравенством Т°Cmin_ОГ≤T°CОГ≤T°Cmax_ОГ, а также устанавливает границы перемещения SКР 2 рабочего органа КР, поддерживающего давление добытой газоконденсатной смеси на входе установки, от положения Smin_KP 2 – минимально открыт, до полностью открыт, устанавливает границы предельно допустимого перемещения SKP 5 рабочего органа КР, поддерживающего расход осушенного газа, подаваемого в МГП, от положения Smin_КР 5 – минимально открыт, до полностью открыт, устанавливает границы предельно допустимого перемещения SКР 12 рабочего органа КР, управляющего скоростью вращения ротора ТДА, от положения Smin_КР 12 – минимально открыт, до полностью открыт, после чего осуществляет запуск установки в эксплуатацию, технологические процессы в которой ведет АСУ ТП, используя четыре ПИД-регулятора и один каскад из двух ПИД-регуляторов, построенных на ее базе, и каждый из этих четырех ПИД-регуляторов, с помощью подсоединенных к ним КР, управляет своим параметром, а в каскаде из двух ПИД-регуляторов первый формирует сигнал оперативного значения уставки скорости вращения ротора ТДА, необходимой для удержания требуемой технологическим регламентом температуры в низкотемпературном сепараторе, и подает ее на второй ПИД-регулятор каскада, который управляет с помощью подсоединенного к нему КР скоростью вращения ротора ТДА.

3. Способ по п. 2, отличающийся тем, что АСУ ТП формирует сообщение оператору установки для принятия решения по изменению режима работы кустов газодобывающих скважин, если в режиме коррекции уставки Рвх. с помощью КР, установленного на входе установки и управляющего давлением добытой газоконденсатной смеси на ее входе, будет выявлено, что его рабочий орган перешел в состояние полностью открыт или достиг минимально открытого положения Smin_КР2, либо значение уставки Рвх. вышло за границы ее допустимых изменений.

Документы, цитированные в отчете о поиске Патент 2022 года RU2783036C1

СПОСОБ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ С ПРИМЕНЕНИЕМ ТУРБОДЕТАНДЕРНЫХ АГРЕГАТОВ НА УСТАНОВКЕ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА В УСЛОВИЯХ КРАЙНЕГО СЕВЕРА 2018
  • Николаев Олег Александрович
  • Арабский Анатолий Кузьмич
  • Завьялов Сергей Владимирович
  • Ефимов Андрей Николаевич
  • Макшаев Михаил Николаевич
  • Смердин Илья Валериевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
  • Датков Дмитрий Иванович
RU2680532C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТЬЮ УСТАНОВКИ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА В УСЛОВИЯХ КРАЙНЕГО СЕВЕРА 2019
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Завьялов Сергей Владимирович
  • Ефимов Андрей Николаевич
  • Смердин Илья Валериевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2709044C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТЬЮ УСТАНОВКИ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА 2019
  • Арабский Анатолий Кузьмич
  • Завьялов Сергей Владимирович
  • Ефимов Андрей Николаевич
  • Макшаев Михаил Николаевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2709045C1
Система регулирования технологического режима установки низкотемпературной сепарации газа 1978
  • Тараненко Борис Федорович
SU771422A1
Приспособление для установки механических форсунок 1925
  • Никоро П.М.
SU2954A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
US 8128728 B2, 06.03.2012.

RU 2 783 036 C1

Авторы

Моисеев Виктор Владимирович

Арабский Анатолий Кузьмич

Агеев Алексей Леонидович

Гункин Сергей Иванович

Турбин Александр Александрович

Талыбов Этибар Гурбанали Оглы

Пономарев Владислав Леонидович

Даты

2022-11-08Публикация

2022-03-15Подача