Изобретение относится к криптографической технике, а именно к системам квантовой рассылки криптографического ключа.
Известно устройство квантовой рассылки криптографического ключа на поднесущей частоте модулированного излучения [Патент РФ RU2454810 (C1), дата публикации 2012-06-27., дата приоритета 24.11.2010. МКИ: H04L 9/08], содержащее, соединенные посредством волоконно-оптической линии связи, передающее устройство, включающее расположенные последовательно по ходу излучения источник монохроматического излучения, электрооптический фазовый модулятор и аттенюатор, а также устройство сдвига фазы, выход которого соединен с управляющим входом электрооптического фазового модулятора, а вход устройства сдвига фазы соединен с выходом генератора радиочастотного сигнала, и приемное устройство, включающее электрооптический фазовый модулятор, приемник классического излучения, оптически сопряженный со спектральным фильтром и приемник одиночных фотонов, электрооптический фазовый модулятор подключен к устройству сдвига фазы, к входу которого подключен выход генератора радиочастотного сигнала, волоконно-оптическая линия связи оптически сопряжена с аттенюатором передающего устройства, устройство содержит блок синхронизации, первый и второй выходы которого соединены с входами генератора радиочастотного сигнала приемного и передающего устройств соответственно, причем электрооптический фазовый модулятор в приемном устройстве выполнен из двух расположенных по ходу излучения электрооптических фазовых модуляторов, управляющие входы которых соединены с первым и вторым выходом устройства сдвига фазы соответственно, причем выход первого электрооптического фазового модулятора оптически сопряжен с выходом второго электрооптического фазового модулятора, за модуляторами по ходу излучения установлено фарадеевское зеркало, оптически сопряженное с входом второго электрооптического фазового модулятора, в приемное устройство введен оптический циркулятор, первый порт которого оптически сопряжен с волоконно-оптической линией связи, второй порт оптически сопряжен с входом первого электрооптического фазового модулятора, третий порт оптически сопряжен со спектральным фильтром, а четвертый порт оптически сопряжен с входом приемника одиночных фотонов, устройство синхронизации имеет третий и четвертый выходы, которые соединены с синхронизационными входами устройств сдвига фазы приемного и передающего устройств соответственно.
Прототипом к предлагаемому устройству квантовой рассылки криптографического ключа с частотным кодированием является устройство квантовой рассылки криптографического ключа с частотным кодированием [Патент РФ RU2692431 (C1), дата публикации 2019-06-24, дата приоритета 03.07.2018. МКИ: H04L 9/08, H04B 10/85], содержащее, соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство; а также блок синхронизации; при этом передающее устройство включает в себя источник монохроматического излучения, электрооптический фазовый модулятор передающего устройства, выход которого оптически сопряжен с входом аттенюатора, выход аттенюатора оптически сопряжен с входом волоконно-оптической линии связи; а также устройство сдвига фазы передающего устройства, вход которого соединен с первым выходом генератора радиочастотного сигнала передающего устройства; при этом приемное устройство, включает в себя электрооптический фазовый модулятор приемного устройства, оптический циркулятор, второй порт оптического циркулятора оптически сопряжен с входом спектрального фильтра, третий порт оптического циркулятора оптически сопряжен с входом приемника одиночных фотонов, выход приемника одиночных фотонов является первым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, выход спектрального фильтра оптически сопряжен с входом приемника классического излучения, выход приемника классического излучения является вторым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, а также устройство сдвига фазы приемного устройства, вход устройства сдвига фазы приемного устройства соединен с первым выходом генератора радиочастотного сигнала приемного устройства; при этом первый и второй выходы блока синхронизации соединены с синхронизационными входами генератора радиочастотного сигнала передающего устройства и генератора радиочастотного сигнала приемного устройства соответственно, третий и четвертый выходы блока синхронизации соединены с синхронизационными входами устройства сдвига фазы передающего устройства и устройства сдвига фазы приемного устройства соответственно, причем в передающее устройство дополнительно введены электрооптический амплитудный модулятор передающего устройства и преобразователь радиочастотного сигнала передающего устройства, при этом вход электрооптического амплитудного модулятора передающего устройства оптически сопряжен с выходом источника монохроматического излучения, выход электрооптического амплитудного модулятора передающего устройства оптически сопряжен с входом электрооптического фазового модулятора передающего устройства, а управляющий вход электрооптического амплитудного модулятора передающего устройства соединен с выходом устройства сдвига фазы передающего устройства, вход преобразователя радиочастотного сигнала передающего устройства соединен с вторым выходом генератора радиочастотного сигнала передающего устройства, а выход преобразователя радиочастотного сигнала передающего устройства соединен с управляющим входом электрооптического фазового модулятора передающего устройства; в приемное устройство также дополнительно введены электрооптический амплитудный модулятор приемного устройства, преобразователь радиочастотного сигнала приемного устройства, при этом вход электрооптического амплитудного модулятора приемного устройства оптически сопряжен с выходом электрооптического фазового модулятора приемного устройства, выход электрооптического амплитудного модулятора приемного устройства оптически сопряжен с первым портом оптического циркулятора, управляющий вход электрооптического амплитудного модулятора приемного устройства соединен с выходом устройства сдвига фазы приемного устройства, вход преобразователя радиочастотного сигнала приемного устройства соединен с вторым выходом генератора радиочастотного сигнала приемного устройства, выход преобразователя радиочастотного сигнала приемного устройства соединен с управляющим входом электрооптического фазового модулятора приемного устройства, вход электрооптического фазового модулятора приемного устройства оптически сопряжен с выходом волоконно-оптической линии связи.
Техническое решение по прототипу имеет не достаток в виде высокого коэффициента квантовых ошибок, что, в свою очередь, ведет к недостаточной достоверности рассылки криптографического ключа по квантовому каналу, и к увеличению времени обработки криптографического ключа на приемном устройстве.
Технической проблемой является создание устройства квантовой рассылки криптографического ключа с частотным кодированием, позволяющего уменьшить коэффициент квантовых ошибок, за счет полностью пассивной фильтрации данных на приемном устройстве, что повысит достоверность рассылки криптографического ключа по квантовому каналу, и уменьшит время обработки криптографического ключа на приемном устройстве.
Технический результат предлагаемого изобретения заключается в уменьшении коэффициента квантовых ошибок, за счет полностью пассивной фильтрации данных на приемном устройстве.
Технический результат в устройстве квантовой рассылки криптографического ключа с частотным кодированием, содержащем соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство; при этом передающее устройство содержит источник монохроматического излучения, выход которого оптически сопряжен с входом электрооптического амплитудного модулятора передающего устройства, управляющий вход электрооптического амплитудного модулятора передающего устройства соединен с выходом устройства сдвига фазы передающего устройства, выход электрооптического амплитудного модулятора передающего устройства оптически сопряжен с входом электрооптического фазового модулятора передающего устройства, управляющий вход электрооптического фазового модулятора передающего устройства соединен с выходом преобразователя радиочастотного сигнала передающего устройства, выход электрооптического фазового модулятора передающего устройства оптически сопряжен с входом аттенюатора, выход аттенюатора оптически сопряжен с входом волоконно-оптической линии связи, передающее устройство также содержит генератор радиочастотного сигнала передающего устройства, первый выход которого соединен с входом устройства сдвига фазы передающего устройства; при этом приемное устройство, включает в себя спектральный фильтр, первый выход которого оптически сопряжен с входом приемника классического излучения, выход приемника классического излучения является первым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, приемное устройство также содержит первый приемник одиночных фотонов, выход которого является вторым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, достигается тем, что в передающее устройство дополнительно введено устройство подстройки фазы передающего устройства, выход которого соединен с входом преобразователя радиочастотного сигнала передающего устройства, вход устройства подстройки фазы передающего устройства соединен с вторым выходом генератора радиочастотного сигнала передающего устройства, а также, в приемном устройстве спектральный фильтр является многоканальным и имеет пять выходов, вход спектрального фильтра оптически сопряжен с выходом волоконно-оптической линии связи, второй выход спектрального фильтра оптически сопряжен с входом первого приемника одиночных фотонов, также в приемное устройство дополнительно введены, второй приемник одиночных фотонов, выход которого является третьим выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход второго приемника одиночных фотонов оптически сопряжен с третьим выходом спектрального фильтра, третий приемник одиночных фотонов, выход которого является четвертым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход третьего приемника одиночных фотонов оптически сопряжен с четвертым выходом спектрального фильтра, четвертый приемник одиночных фотонов, выход которого является пятым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход четвертого приемника одиночных фотонов оптически сопряжен с пятым выходом спектрального фильтра.
Изобретение поясняется чертежами, где на фиг.1 представлена – схема устройства квантовой рассылки криптографического ключа с частотным кодированием. На фиг.2 – частотный спектр исходного сигнала, на выходе источника монохроматического излучения. На фиг.3 – частотный спектр двухчастотного амплитудно-модулированного сигнала на частоте Ω, на выходе электрооптического амплитудного модулятора передающего устройства. На фиг.4 – частотный спектр однофотонного двухчастотного амплитудно-модулированного сигнала на частоте Ω, на выходе аттенюатора. На фиг.5 – частотный спектр амплитудно-модулированного сигнала на частоте Ω, на выходе электрооптического амплитудного модулятора передающего устройства. На фиг.6 – частотный спектр фазо-коммутированного сигнала на частоте Ω/2, на выходе электрооптического фазового модулятора передающего устройства. На фиг.7 – частотный спектр однофотонного фазо-коммутированного сигнала на частоте Ω/2, на выходе аттенюатора. На фиг.8 – частотный спектр амплитудно-модулированного сигнала на частоте Ω, на выходе электрооптического амплитудного модулятора передающего устройства. На фиг.9 – частотный спектр фазо-коммутированного сигнала на частоте 3Ω/2, на выходе электрооптического фазового модулятора передающего устройства. На фиг.10 – частотный спектр однофотонного фазо-коммутированного сигнала на частоте Ω/2, на выходе аттенюатора. На фиг.11 – частотный спектр двухчастотного амплитудно-модулированного сигнала на частоте 2Ω, на выходе электрооптического амплитудного модулятора передающего устройства. На фиг.12 – частотный спектр однофотонного двухчастотного амплитудно-модулированного сигнала на частоте 2Ω, на выходе аттенюатора.
Заявляемое устройство квантовой рассылки криптографического ключа с частотным кодированием, изображенное на Фиг.1, содержит соединенные между собой волоконно-оптической линией связи 1, передающее устройство 2 и приемное устройство 3; при этом передающее устройство 2 включает в себя: последовательно оптически сопряженные, источник монохроматического излучения 4, электрооптический амплитудный модулятор передающего устройства 5, электрооптический фазовый модулятор передающего устройства 6 и аттенюатор 7, выход аттенюатора 7 является выходом передающего устройства 2 и оптически сопряжен с входом волоконно-оптической линии связи 1, а также устройство сдвига фазы передающего устройства 8, вход устройства сдвига фазы передающего устройства 8 соединен с первым выходом генератора радиочастотного сигнала передающего устройства 9, а выход устройства сдвига фазы передающего устройства 8 соединен с управляющим входом электрооптического амплитудного модулятора передающего устройства 5, второй выход генератора радиочастотного сигнала передающего устройства 9 соединен с входом устройства подстройки фазы передающего устройства 10, выход устройства подстройки фазы передающего устройства 10 соединен с входом преобразователя радиочастотного сигнала передающего устройства 11, выход преобразователя радиочастотного сигнала передающего устройства 11 соединен с управляющим входом электрооптического фазового модулятора передающего устройства 6, первый и второй выходы генератора радиочастотного сигнала передающего устройства 9 идентичны друг другу; при этом приемное устройство 3 включает в себя: спектральный фильтр 12 является многоканальным и имеет пять выходов, первый выход спектрального фильтра 12 оптически сопряжен с входом приемника классического излучения 13, выход приемника классического излучения 13 является первым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, второй выход спектрального фильтра 12 оптически сопряжен с входом первого приемника одиночных фотонов 14, выход первого приемника одиночных фотонов 14 является вторым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, третий выход спектрального фильтра 12 оптически сопряжен с входом второго приемника одиночных фотонов 15, выход второго приемника одиночных фотонов 15 является третьим выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, четвертый выход спектрального фильтра 12 оптически сопряжен с входом третьего приемника одиночных фотонов 16, выход третьего приемника одиночных фотонов 16 является четвертым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, пятый выход системы спектральных фильтров 12 оптически сопряжен с входом четвертого приемника одиночных фотонов 17, выход четвертого приемника одиночных фотонов 17 является пятым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, при этом вход спектрального фильтра 12 является входом приемного устройства 3 и оптически сопряжен с выходом волоконно-оптической линии связи 1, при этом элементы, входящие в состав передающего устройства 2, источник монохроматического излучения 4, аттенюатор 7, устройство сдвига фазы передающего устройства 8, генератор радиочастотного сигнала передающего устройства 9, устройство подстройки фазы передающего устройства 10, преобразователь радиочастотного сигнала передающего устройства 11, и элементы, входящие в состав приемного устройства 3, приемник классического излучения 13, первый приемник одиночных фотонов 14, второй приемник одиночных фотонов 15, третий приемник одиночных фотонов 16, четвертый приемник одиночных фотонов 17, имеют систему электропитания, которая на схеме не показана.
Рассмотрим устройство квантовой рассылки криптографического ключа с частотным кодированием изображенный на Фиг.1 в работе. Предварительно включают систему электропитания и подают напряжение на элементы, входящие в состав передающего устройства 2, источник монохроматического излучения 4, аттенюатор 7, устройство сдвига фазы передающего устройства 8, генератор радиочастотного сигнала передающего устройства 9, устройство подстройки фазы передающего устройства 10, преобразователь радиочастотного сигнала передающего устройства 11, и элементы, входящие в состав приемного устройства 3, приемник классического излучения 13, первый приемник одиночных фотонов 14, второй приемник одиночных фотонов 15, третий приемник одиночных фотонов 16, четвертый приемник одиночных фотонов 17.
Для передачи первого из четырех ортогональных состояний фотона, состояния , на передающем устройстве 2, источником монохроматического излучения 4 генерируется световой пучок с частотой ω0 (фиг.2). Дальше излучение подвергается амплитудной модуляции в электрооптическом амплитудном модуляторе передающего устройства 5. В данном случае применяется амплитудная модуляция, напряжением с частотой Ω в «нулевой» рабочей точке амплитудного модулятора передающего устройства 5. Источником синусоидального сигнала является генератор радиочастотного сигнала передающего устройства 9. В результате амплитудной модуляции на выходе электрооптического амплитудного модулятора передающего устройства 5 появляется двухчастотное излучение на частотах ω0 – Ω и ω0 + Ω (фиг.3), (Ω – частота модулирующего радиочастотного сигнала для амплитудной модуляции). Далее амплитудно-модулированный излучение (фиг.3), проходит через открытый электрооптический фазовый модулятор передающего устройства 6 без модуляции. Далее двухчастотное излучение (фиг.3) ослабляется до однофотонного уровня с помощью аттенюатора 7 (фиг.4). Полученный на выходе аттенюатора 7 однофотонное двухчастотное излучение на частотах ω0 – Ω и ω0 + Ω (фиг.4), передается на приемное устройство 3 через волоконно-оптическую линию связи 1, которая представляющей собой квантовый канал, который соединяет передающее устройство 2 с приемным устройством 3. Однофотонное двухчастотное излучение на частотах ω0 – Ω и ω0 + Ω (фиг.4) в приемном устройстве 3 попадает на вход спектрального фильтра 12, где разделяются спектральные составляющие излучения. Однофотонное двухчастотное излучение на частотах ω0 – Ω и ω0 + Ω (фиг.4) выходит через второй выход спектрального фильтра 12 и попадает на вход первого приемника одиночных фотонов 14, где детектируется факт приема фотона.
Для передачи второго из четырех ортогональных состояний фотона, состояния , на передающем устройстве 2, источником монохроматического излучения 4 генерируется световой пучок с частотой ω0 (фиг.2). Дальше излучение подвергается амплитудной модуляции в электрооптическом амплитудном модуляторе передающего устройства 5. В данном случае применяется амплитудная модуляция при работе электрооптического амплитудного модулятора передающего устройства 5 на линейном участке напряжением с частотой Ω и коэффициентом амплитудной модуляции m=0,55. Источником синусоидального сигнала является генератор радиочастотного сигнала передающего устройства 9. В результате амплитудной модуляции на выходе электрооптического амплитудного модулятора передающего устройства 5 появляется излучение в спектре которого формируются две боковые частоты ω0 – Ω и ω0 + Ω (фиг.5), отстоящие от основной частоты оптического сигнала ω0 на величину частоты Ω (фиг.5) (Ω – частота модулирующего радиочастотного сигнала для амплитудной модуляции). Далее амплитудно-модулированное излучение проходит фазовую коммутацию в электрооптическом фазовом модуляторе передающего устройства 6, применяется такая прямоугольная фазовая модуляция, при которой фаза модуляции переворачивается на 180 градусов при каждом прохождении нулевой точки синусоидальной модуляции, вследствие чего вся энергия несущей частоты перекачивается в боковые составляющие ω0 – Ω/2 и ω0 + Ω/2 (фиг.6) (Ω/2 – частота модулирующего радиочастотного сигнала для фазовой модуляции, где – Ω равно частоте модулирующего радиочастотного сигнала для амплитудной модуляции), в результате которого, появляется двухчастотное излучение на частотах ω0 – Ω/2 и ω0 + Ω/2 (фиг.6). тем самым, из квантового канала передачи исключается многофотонная несущая частота. Источником прямоугольного сигнала является преобразователь радиочастотного сигнала передающего устройства 11. Подстройка фазы прямоугольного сигнала, для получения идеального подавления несущей в структуре сигнала, осуществляется в устройстве подстройки фазы передающего устройства 10. Далее двухчастотное излучение на частотах ω0 – Ω/2 и ω0 + Ω/2 (фиг.6) ослабляется до однофотонного уровня с помощью аттенюатора 7 (фиг.7). Полученный на выходе аттенюатора 7 однофотонное двухчастотное излучение на частотах ω0 – Ω/2 и ω0 + Ω/2 (фиг.7), передается на приемное устройство 3 через волоконно-оптическую линию связи 1, которая представляющей собой квантовый канал, который соединяет передающее устройство 2 с приемным устройством 3. Однофотонное двухчастотное излучение на частотах ω0 – Ω/2 и ω0 + Ω/2 (фиг.7) в приемном устройстве 3 попадает на вход спектрального фильтра 12, где разделяются спектральные составляющие излучения. Однофотонное двухчастотное излучение на частотах ω0 – Ω/2 и ω0 + Ω/2 (фиг.7) выходит через третий выход спектрального фильтра 12 и попадает на вход второго приемника одиночных фотонов 15, где детектируется факт приема фотона.
Для передачи третьего из четырех ортогональных состояний фотона, состояние , на передающем устройстве 2, источником монохроматического излучения 4 генерируется световой пучок с частотой ω0 (фиг.2). Дальше излучение подвергается амплитудной модуляции в электрооптическом амплитудном модуляторе передающего устройства 5. В данном случае применяется амплитудная модуляция при работе электрооптического амплитудного модулятора передающего устройства 5 на линейном участке напряжением с частотой и коэффициентом амплитудной модуляции m=0,55. Источником синусоидального сигнала является генератор радиочастотного сигнала передающего устройства 9. В результате амплитудной модуляции на выходе электрооптического амплитудного модулятора передающего устройства 5 появляется излучение в спектре которого формируются две боковые частоты ω0 – Ω и ω0 + Ω (фиг.8), отстоящие от основной частоты оптического сигнала ω0 на величину частоты Ω (фиг.8) (Ω – частота модулирующего радиочастотного сигнала для амплитудной модуляции). Далее амплитудно-модулированное излучение проходит фазовую коммутацию в электрооптическом фазовом модуляторе передающего устройства 6, применяется такая прямоугольная фазовая модуляция, при которой фаза модуляции переворачивается на 180 градусов при каждом прохождении нулевой точки синусоидальной модуляции, вследствие чего вся энергия несущей частоты перекачивается в боковые составляющие ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.9) (3Ω/2 – частота модулирующего радиочастотного сигнала для фазовой модуляции, где – Ω равно частоте модулирующего радиочастотного сигнала для амплитудной модуляции), в результате которого, появляется двухчастотное излучение на частотах ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.9), тем самым, из квантового канала передачи исключается многофотонная несущая частота. Источником прямоугольного сигнала является преобразователь радиочастотного сигнала передающего устройства 11. Подстройка фазы прямоугольного сигнала, для получения идеального подавления несущей в структуре сигнала, осуществляется в устройстве подстройки фазы передающего устройства 10. Далее двухчастотное излучение на частотах ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.9) ослабляется до однофотонного уровня с помощью аттенюатора 7 (фиг.10). Полученный на выходе аттенюатора 7 однофотонное двухчастотное излучение на частотах ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.10), передается на приемное устройство 3 через волоконно-оптическую линию связи 1, которая представляющей собой квантовый канал, который соединяет передающее устройство 2 с приемным устройством 3. Однофотонное двухчастотное излучение на частотах ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.10) в приемном устройстве 3 попадает на вход спектрального фильтра 12, где разделяются спектральные составляющие излучения. Однофотонное двухчастотное излучение на частотах ω0 – 3Ω/2 и ω0 + 3Ω/2 (фиг.10) выходит через четвертый выход спектрального фильтра 12 и попадает на вход третьего приемника одиночных фотонов 16, где детектируется факт приема фотона.
Для передачи четвертого из четырех ортогональных состояний фотона, состояние , на передающем устройстве 2, источником монохроматического излучения 4 генерируется световой пучок с частотой ω0 (фиг.2). Дальше излучение подвергается амплитудной модуляции в электрооптическом амплитудном модуляторе передающего устройства 5. В данном случае применяется амплитудная модуляция, напряжением с частотой 2Ω в «нулевой» рабочей точке амплитудного модулятора передающего устройства 5. Источником синусоидального сигнала является генератор радиочастотного сигнала передающего устройства 9. В результате амплитудной модуляции на выходе электрооптического амплитудного модулятора передающего устройства 5 появляется двухчастотное излучение на частотах ω0 – 2Ω и ω0 + 2Ω (фиг.11), (Ω – частота модулирующего радиочастотного сигнала для амплитудной модуляции). Далее амплитудно-модулированный излучение (фиг.11), проходит через открытый электрооптический фазовый модулятор передающего устройства 6 без модуляции. Далее двухчастотное излучение (фиг.11) ослабляется до однофотонного уровня с помощью аттенюатора 7 (фиг.12). Полученный на выходе аттенюатора 7 однофотонное двухчастотное излучение на частотах ω0 – 2Ω и ω0 + 2Ω (фиг.12), передается на приемное устройство 3 через волоконно-оптическую линию связи 1, которая представляющей собой квантовый канал, который соединяет передающее устройство 2 с приемным устройством 3. Однофотонное двухчастотное излучение на частотах ω0 – 2Ω и ω0 + 2Ω (фиг.12) в приемном устройстве 3 попадает на вход спектрального фильтра 12, где разделяются спектральные составляющие излучения. Однофотонное двухчастотное излучение на частотах ω0 – 2Ω и ω0 + 2Ω (фиг.12) выходит через пятый выход спектрального фильтра 12 и попадает на вход четвертого приемника одиночных фотонов 17, где детектируется факт приема фотона.
Многофотонное излучение на несущей частоте ω0 (фиг.2), является опорным сигналом, который может содержать информацию для синхронизации работы элементов передающего устройства 2 и приемного устройства 3, проходит через первый выход спектрального фильтра 12 и попадает в приемник классического излучения 13.
Данные, полученные с приемника классического излучения 16, с первого приемника одиночных фотонов 17, с второго приемника одиночных фотонов 18, с третьего приемника одиночных фотонов 19, с четвертого приемника одиночных фотонов 18, передаются соответственно через первый, второй, третий, четвертый и пятый выходы устройства квантовой рассылки криптографического ключа с частотным кодированием на компьютер (который на схеме не показан), и дальнейшая обработка этих данных производится на компьютере. Анализируя сигналы на несущей частоте ω0 (фиг.2) и на на поднесущих частотах ω0 – Ω и ω0 + Ω (фиг.4), ω0 – Ω/2 и ω0 + Ω/2 (фиг.7), ω0 – 3Ω/2 и ω0 + 3/2Ω (фиг.10), ω0 – 2Ω и ω0 + 2Ω (фиг.12) передающее устройство 2 и приемное устройство 3 получают секретный криптографический ключ и делают вывод о присутствии подслушивающего злоумышленника.
Устройство квантовой рассылки криптографического ключа с частотным кодированием может быть реализован на следующих элементах, рассчитанных на работу на длине волны 1550 нм (возможны и другие длины волн):
- волоконно-оптическая линия связи 1, представляет собой одномодовое волокно SMF-28 1550 нм различных производителей. Например: эталонные шнуры или кабели на волокне SMF-28 фирмы Corning, ТЕЛЕКОМ-ТЕСТ фирмы ООО «Производственно-торговая компания СОКОЛ», АО «ОФС РУС Волоконно-Оптическая Кабельная Компания», ЗАО ”Самарская оптическая кабельная компания”, ЗАО ”ВИКТАН” – ПРЕДСТАВИТЕЛЬ В РФ ПАО ”ЗАВОД ”ЮЖКАБЕЛЬ”, Broadcom Limited (Сингапур и США), Fiber Instrument Sales Inc. (США), Eoptolink Technology Inc., Ltd. (Китай), Sumix (США), OPTOKON a.s. (Чехия), Optoway Technologies Inc. (Тайвань), Kamaxoptic Communication Co., Ltd. (Шэньчжэнь, Китай), Kaiphone Technology Co., Ltd. (Китай), Industrial Fiber Optics (США), Allray Inc. (Китай), Nestor Cables Oy (Финляндия) и т.д.
Устройства, входящие в передающее устройство 2, могут быть реализованы на следующих элементах:
- источник монохроматического излучения 4, может быть выполнен, как одночастотный полупроводниковый лазер с волоконным выходом, с перестраиваемой длиной волны в диапазоне 1510-1560 нм и перестраиваемым значением выходной мощности от 3 до 10 мВт различных производителей. Например: PHOENIX 1200 – перестраиваемый лазер – фирмы LUNA Luna Innovations Incorporated (США) или PHOENIX 1000 - перестраиваемые ECDL лазеры – фирмы LUNA Luna Innovations Incorporated (США) или 1752A - 1,5 мкм лазерные диоды стандарта DOCSIS 3.1 – фирмы EMCORE (США), коротко импульсный лазерный источник ID300 – фирмы ID Quantique (Швейцария) и т.д.
- электрооптический амплитудный модулятор передающего устройства 5, может быть построен на кристалле ниобата лития (LiNbO3) с потерями на пропускание 2.5-3 дБ различных производителей. Например: MXAN-LN-10 - аналоговый 1550 нм 12 ГГц оптический модулятор – фирмы iXBlue Photonics (Франция), LN81S-FC - Zero-Chirp, 10 GHz Intensity Mod., Integrated PD and Replaceable GPO Conn, FC/PC – фирмы Thorlabs (США), LN82S-FC - Fixed-Chirp, 10 GHz Intensity Mod., Integrated PD and Replaceable GPO Connector, FC/PC – фирмы Thorlabs (США) LN58S-FC - 20 GHz Low Vpi Analog Modulator, FC/PC Connectorized – фирмы Thorlabs (США) и т.д.
- электрооптический фазовый модулятор передающего устройства 6, может быть построен на кристалле ниобата лития (LiNbO3) с потерями на пропускание 2.5-3 дБ различных производителей. Например, MPZ-LN-10 - 1550 нм 12 ГГц фазовый модулятор – фирмы iXBlue Photonics (Франция), LN65S-FC - 10 GHz Phase Modulator with Polarizer, FC/PC Connectors – фирмы Thorlabs (США), LN53S-FC - 10 GHz Phase Modulator without Polarizer, FC/PC Connectors – фирмы Thorlabs (США) и т.д.
- аттенюатор 7, может быть выполнен, как одномодовый регулируемый аттенюатор различных производителей. Например: VOA50-APC - Одномодовый регулируемый аттенюатор, рабочая длина волны: 1310/1550 нм, макс. ослабление: 50 дБ, разъемы: FC/APC, – фирмы Thorlabs (США), VOA50-FC - Одномодовый регулируемый аттенюатор, рабочая длина волны: 1310/1550 нм, макс. ослабление: 50 дБ, разъемы: FC/PC, – фирмы Thorlabs (США), VOA50 - Одномодовый регулируемый аттенюатор, рабочая длина волны: 1310/1550 нм, макс. ослабление: 50 дБ, без разъемов, – фирмы Thorlabs (США), V1550F - Электронный регулируемый аттенюатор, рабочий диапазон: 1250 - 1650 нм, разъем: FC/PC, – фирмы Thorlabs (США) и т.д.
- устройство сдвига фазы передающего устройства 8, может быть выполнено, как программируемый фазовращатель. Например: LPS-402 программируемый фазовращатель USB с пропускной способностью 2 ГГц и LPS-802 программируемый фазовращатель USB с пропускной способностью 4 ГГц – фирмы Vaunix (США)
- генератор радиочастотного сигнала передающего устройства 9, может быть выполнен, как программируемый USB-генератор сигналов. Например: LMS-802DX 2,0 - 8,0 ГГц программируемый USB-генератор сигналов – фирмы Vaunix (США)
- устройство подстройки фазы передающего устройства 10, может быть выполнено, как программируемый фазовращатель. Например: LPS-402 программируемый фазовращатель USB с пропускной способностью 2 ГГц и LPS-802 программируемый фазовращатель USB с пропускной способностью 4 ГГц – фирмы Vaunix (США),
- преобразователь радиочастотного сигнала передающего устройства 11, может быть выполнен как триггер Шмитта. Например: SN74LVC2G17 Dual Schmitt-Trigger Buffer – фирмы Texas Instruments (США).
Устройства, входящие в приемное устройство 3, могут быть реализованы на следующих элементах:
- спектральный фильтр 12 является многоканальным и имеет пять выходов, может быть выполнен, как многоканальный разветвитель, на выходах которого записаны волоконно-оптические решетки Брэгга с фазовым π-сдвигом, настроенные на несущую или боковые составляющие несущей фотона. Волоконно-оптические решетки Брэгга с фазовым π-сдвигом, записанные на волокне SMF-28 в НЦВО «Фотоника» (Москва), НИИ ПРЭФЖС КНИТУ-КАИ (Казань), Инверсия-Файбер (Новосибирск), Инверсия-Сенсор (Пермь) и т.д.
- приемник классического излучения 13, может быть выполнен, как SFP трансмиттер различных производителей и разной дальности (например: 3 км, 20км, 40 км, 80км, 120км) – фирмы NetLink (Китай), GIGALINK (Россия), Cisco (США), Стрела (Россия),
- первый приемник одиночных фотонов 14, может быть выполнен, как детектор одиночных фотонов на кремниевых лавинных диодах различных производителей. Например: модели ID230, ID210, ID220, ID280 – фирмы ID Quantique (Швейцария)
- второй приемник одиночных фотонов 15, может быть выполнен, как детектор одиночных фотонов на кремниевых лавинных диодах различных производителей. Например: модели ID230, ID210, ID220, ID280 – фирмы ID Quantique (Швейцария),
- третий приемник одиночных фотонов 16, может быть выполнен, как детектор одиночных фотонов на кремниевых лавинных диодах различных производителей. Например: модели ID230, ID210, ID220, ID280 – фирмы ID Quantique (Швейцария),
- четвертый приемник одиночных фотонов 17, может быть выполнен, как детектор одиночных фотонов на кремниевых лавинных диодах различных производителей. Например: модели ID230, ID210, ID220, ID280 – фирмы ID Quantique (Швейцария),
Заявляемое изобретение позволяет достичь технический результат уменьшения коэффициента квантовых ошибок, за счет полностью пассивной фильтрации данных на приемном устройстве.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО КВАНТОВОЙ РАССЫЛКИ КРИПТОГРАФИЧЕСКОГО КЛЮЧА С ЧАСТОТНЫМ КОДИРОВАНИЕМ | 2022 |
|
RU2784025C1 |
Устройство квантовой рассылки криптографического ключа с частотным кодированием | 2018 |
|
RU2692431C1 |
УСТРОЙСТВО КВАНТОВОЙ РАССЫЛКИ КРИПТОГРАФИЧЕСКОГО КЛЮЧА НА ПОДНЕСУЩЕЙ ЧАСТОТЕ МОДУЛИРОВАННОГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2454810C1 |
Устройство квантовой рассылки ключа на боковых частотах, устойчивое к поляризационным искажениям сигнала в волоконно-оптических линиях связи | 2019 |
|
RU2747164C1 |
Устройство квантовой коммуникации на боковых частотах с регистрацией излучения на центральной частоте | 2020 |
|
RU2750810C1 |
Способ детектирования фаз малофотонных когерентных световых полей на боковых частотах в системе квантового распределения ключа | 2021 |
|
RU2812341C2 |
Устройство квантовой коммуникации на боковых частотах с увеличенным дискретным набором фаз модулирующих сигналов | 2020 |
|
RU2744509C1 |
ВЫСОКОСКОРОСТНАЯ АВТОКОМПЕНСАЦИОННАЯ СХЕМА КВАНТОВОГО РАСПРЕДЕЛЕНИЯ КЛЮЧА | 2016 |
|
RU2671620C1 |
Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с гетеродинным методом приема | 2020 |
|
RU2758711C1 |
Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с гомодинным методом приема | 2020 |
|
RU2758709C1 |
Изобретение относится к системам квантовой рассылки криптографического ключа. Технический результат заключается в уменьшении коэффициента квантовых ошибок, за счет полностью пассивной фильтрации данных на приемном устройстве. Устройство квантовой рассылки криптографического ключа с частотным кодированием содержит соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство. Передающее устройство включает в себя источник монохроматического излучения, электрооптический амплитудный модулятор передающего устройства, электрооптический фазовый модулятор передающего устройства, аттенюатор, устройство сдвига фазы передающего устройства, генератор радиочастотного сигнала передающего устройства, преобразователь радиочастотного сигнала передающего устройства. Приемное устройство включает в себя спектральный фильтр, приемник классического излучения, первый приемник одиночных фотонов, цель достигается тем, что в передающее устройство дополнительно введено устройство подстройки фазы передающего устройства, при этом в приемном устройстве спектральный фильтр является многоканальным и имеет пять выходов, также в приемное устройство дополнительно введены второй приемник одиночных фотонов, третий приемник одиночных фотонов, четвертый приемник одиночных фотонов. 12 ил.
Устройство квантовой рассылки криптографического ключа с частотным кодированием, содержащее соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство; при этом передающее устройство содержит источник монохроматического излучения, выход которого оптически сопряжен с входом электрооптического амплитудного модулятора передающего устройства, управляющий вход электрооптического амплитудного модулятора передающего устройства соединен с выходом устройства сдвига фазы передающего устройства, выход электрооптического амплитудного модулятора передающего устройства оптически сопряжен с входом электрооптического фазового модулятора передающего устройства, управляющий вход электрооптического фазового модулятора передающего устройства соединен с выходом преобразователя радиочастотного сигнала передающего устройства, выход электрооптического фазового модулятора передающего устройства оптически сопряжен с входом аттенюатора, выход аттенюатора оптически сопряжен с входом волоконно-оптической линии связи, передающее устройство также содержит генератор радиочастотного сигнала передающего устройства, первый выход которого соединен с входом устройства сдвига фазы передающего устройства; при этом приемное устройство включает в себя спектральный фильтр, первый выход которого оптически сопряжен с входом приемника классического излучения, выход приемника классического излучения является первым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, приемное устройство также содержит первый приемник одиночных фотонов, выход которого является вторым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, отличающееся тем, что в передающее устройство дополнительно введено устройство подстройки фазы передающего устройства, выход которого соединен с входом преобразователя радиочастотного сигнала передающего устройства, вход устройства подстройки фазы передающего устройства соединен с вторым выходом генератора радиочастотного сигнала передающего устройства, а также в приемном устройстве спектральный фильтр является многоканальным и имеет пять выходов, вход спектрального фильтра оптически сопряжен с выходом волоконно-оптической линии связи, второй выход спектрального фильтра оптически сопряжен с входом первого приемника одиночных фотонов, также в приемное устройство дополнительно введены второй приемник одиночных фотонов, выход которого является третьим выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход второго приемника одиночных фотонов оптически сопряжен с третьим выходом спектрального фильтра, третий приемник одиночных фотонов, выход которого является четвертым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход третьего приемника одиночных фотонов оптически сопряжен с четвертым выходом спектрального фильтра, четвертый приемник одиночных фотонов, выход которого является пятым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием, вход четвертого приемника одиночных фотонов оптически сопряжен с пятым выходом спектрального фильтра.
УСТРОЙСТВО КВАНТОВОЙ РАССЫЛКИ КРИПТОГРАФИЧЕСКОГО КЛЮЧА НА ПОДНЕСУЩЕЙ ЧАСТОТЕ МОДУЛИРОВАННОГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2454810C1 |
Устройство квантовой рассылки криптографического ключа с частотным кодированием | 2018 |
|
RU2692431C1 |
US 7266304 B2, 04.09.2007 | |||
US 7227955 B2, 05.06.2007. |
Авторы
Даты
2022-11-23—Публикация
2022-04-25—Подача