Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства и устройство для его реализации Российский патент 2023 года по МПК G01R31/305 

Описание патента на изобретение RU2791950C1

Изобретение относится к испытательной технике и может быть использовано в наземных испытаниях элементов конструкций (ЭК), материалов и покрытий, а также радиоэлектронного оборудования (РЭО) в условиях воздействия факторов космического пространства (ФКП) низкоорбитальных космических аппаратов (НКА) (высота орбиты до 1000 км).

Известно изобретение «Способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к электростатическим разрядам» (Патент РФ №2157545).

Способ основан на произведении испытательного воздействия электростатических разрядов с помощью моделирующей установки. Предварительно производят облучение элементов радиоэлектронной аппаратуры стационарным ионизирующим излучением, а затем их отжиг во включенном состоянии до установки их в аппаратуру и ее сборку, причем поглощенную дозу ионизирующего излучения определяют по определенной формуле. Так же в указанном изобретении (Патент РФ №2157545) для проведения испытаний в приемлемые сроки форсируют процессы облучения и отжига, увеличивая мощность дозы излучения и температуру отжига радиационных дефектов.

Недостатком является ограниченная область применения - отсутствие в указанном способе испытания при низком давлении 10-4-10-6 Па условие имитации вакуума в космическом пространстве. Так же недостатком указанного способа является низкая достоверность результатов испытания, которая обусловлена недостаточно полным воспроизведением условий функционирования радиоэлектронной аппаратуры (РЭА) космического аппарата на орбите.

Известен Стенд «Космический имитатор факторов космоса» (КИФК) (Статья В.В. Абраимов, А.А. Негода, А.П. Завалишин, Л.К. Колыбаев Комплексная имитация факторов космического пространства // Космическая наука и технология - 1995. - 1. - №2- 6. - С. 76-80). Стенд предназначен для проведения комплексных испытаний по имитации ФКП.

Недостатком Стенда КИФК является высокая энергия частиц электронов от 50 кэВ до 200 кэВ, что не позволяет рассматривать процесс развития поверхностных зарядов на пластине, накопление объемных зарядов в диэлектрике на приповерхностных слоях и на глубинах пробега электронов при малых энергиях до 50 кэВ. В Стенде КИФК испытуемый объект размещен одной плоскостью к излучаемым источникам, что ограничивает возможность рассмотрения не прямого, а косвенного воздействия на объект, а также проводить комплексные испытания с имитацией на всех плоскостях и гранях объекта. Стенд КИФК не предусматривает режимы облучения потоком электронов, когда поток электронов фокусируется в точку диаметром в несколько миллиметров с возможностью расфокусировки до одного метра, при этом не позволяет создать управляемый и динамически изменяющийся луч потока электронов с регулировкой частоты, угла, диаметра и амплитуды луча на объекте испытания (ОИ), а также производить облучение с требуемой частотой, имитируя естественный процесс воздействия ФКП. В рамках предлагаемого Стенда КИФК не рассматривается использование стандартных сертифицированных средств измерений (СИ) для процесса анализа накопленных зарядов, протекающих разрядов и других процессов системы.

В качестве наиболее близкого аналога предполагаемого стенда физического моделирования факторов космического пространства (стенд ФМ ФКП) выбран стенд для моделирования факторов космического пространства «ПРОГНО3-2» (Исаченко В.И. Испытательный стенд для моделирования факторов космического пространства «Прогноз-2» / Исаченко В.И., A.M. Владимиров; науч. Рук. В.М. Зыков // Неразрушающий контроль: сборник трудов VI Всероссийской научно-практической конференции «неразрушающий контроль: электронное приборостроение, технологии, безопасность», Томск, 23-27 мая 2016 г.: в 3 т.- Томск: Изд-во ТПУ, 2016. -Т. 2 - [4 с.].), который состоит из системы управления, холодильной установки, криоплиты с криоэкраном, криорубашки, крионасоса, двух электронных пушек с максимальными энергиями 70 кэВ и 300 кэВ соответственно, имитатора Солнца, скоростного видеорегистратора и вакуумной камеры.

Недостатком данного стенда является невозможность облучения потоком электронов определенного места ОИ, при этом невозможно создать управляемый и динамически изменяющийся луч потока электронов, регулируя частоту, угол, диаметр и амплитуду луча потока электронов на ОИ, отсутствует возможность перемещения ОИ в процессе испытаний относительно источника излучения потока электронов, так как не предусмотрен вращающийся стол. Отсутствие вращающегося стола исключает возможность облучения всех граней ОИ в одном цикле и требует разгерметизации, и, как следствие, приводит к прерывности процесса, что не соответствует реальным условиям, в которых находится аппарат на орбите, снижает достоверность результатов испытаний.

Техническим результатом заявленного изобретения является разработка способа определения реальных параметров электризации ЭК, материалов, покрытий и оценки работоспособности РЭО в условиях воздействия вышеуказанных ФКП.

Технический результат способа определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства достигается за счет того, что ОИ размещают внутри вакуумной камеры, проводят вакуумирование камеры и контролируют величину вакуума с использованием системы автоматизированной откачки, задают требуемые характеристики излучаемого пучка электронной пушки на стойке управления имитатора потока электронов (ИПЭ), облучают потоком электронов объект испытания, на поворотный стол в случае, когда ОИ является элементом конструкции, то его устанавливают на стойку для ОИ, а в случае, когда ОИ является РЭО устанавливают на приспособление для позиционирования, и для каждого из случаев оснастку заземляют через гермоплату вакуумной камеры, затем подключают к ОИ систему измерения выходных параметров, после закрытия вакуумной камеры устанавливают радиационную защиту, закрывающую фланцевые стыки секций вакуумной камеры экранами и кожухами, когда ОИ находится под вакуумом, используя систему фокусировки ИПЭ, устанавливают ток и диаметр луча потока электронов на ОИ, ИПЭ включают в режиме «прожектор», облучая ОИ полностью, и в режиме «сканирование», когда облучение происходит с частотой, установленной оператором, порядок облучения ОИ определяется в зависимости от ОИ, при этом на каждом этапе облучения фиксируют выходные параметры ОИ при напряжении от 5 кВ до 50 кВ с N шагом, с использованием системы измерения выходных параметров ОИ, далее ОИ поворачивают относительно ИПЭ от 0 до 270 градусов в зависимости от ОИ и повторяют вышеуказанные этапы облучения ОИ с фиксацией выходных параметров ОИ.

Технический результат устройства достигается за счет того, что Стенд ФМ ФКП состоит из вакуумной камеры с системой автоматизированной откачки с функцией контроля и измерения вакуума, имитатора потока электронов, состоящего из стойки управления имитатора потока электронов и электронной пушки, позволяющей непрерывно облучать потоком электронов объект испытания, находящийся внутри полезного объема вакуумной камеры, поворотного стола внутри вакуумной камеры, на который в зависимости от конструктивных особенностей и вида объекта испытаний устанавливается заземленная через гермоплату вакуумной камеры оснастка в виде стойки для ОИ или приспособления для позиционирования, также стенд снабжен системой измерения выходных параметров ОИ, флуоресцентный экран для контроля положения проекции луча потока электронов, а для защиты рабочего персонала от ионизирующего излучения используется радиационная защита, состоящая из экранов и кожухов, закрывающих фланцевые стыки вакуумной камеры.

При этом система измерений выходных параметров ОИ состоит из двухпроводной линии, высоковольтного кабеля, осциллографа и киловольтметра.

Сущность технического решения поясняется чертежами:

на фиг. 1 приведен общий вид Стенда ФМ ФКП и его составных частей;

на фиг. 2 приведена схема подключения системы измерения, а также расположение ОИ относительно ИПЭ в случае испытания радиоэлектронного оборудования, которое будет находиться в рабочем состоянии на период испытаний;

на фиг. 3 приведена схема подключения системы измерения, а также расположения ОИ относительно ИПЭ в случае испытания элемента конструкции;

Стенд ФМ ФКП состоит из вакуумной камеры 1, внутри которой создается пониженное давление с использованием системы автоматизированной откачки с функцией контроля и измерения вакуума 2 с использованием вакуумного датчика 3. ИПЭ состоит из стойки управления имитатора потока электронов 4 и электронной пушки 5, позволяющей непрерывно облучать потоком электронов ОИ с заданным лучом потока электронов ОИ, находящийся внутри полезного объема вакуумной камеры 1.

Электронная пушка 5 закреплена с использованием штатных средств ИПЭ на фланец вакуумной камеры 1 напротив ОИ. Внутри вакуумной камеры 1 установлен поворотный стол 6, на который в зависимости от конструктивных особенностей и вида ОИ устанавливается заземленная через гермоплату 15 вакуумной камеры 1 оснастка в виде стойки для ОИ 7 или приспособления для позиционирования 8. Также стенд ФМ ФКП снабжен системой измерения выходных параметров ОИ.

В данном случае система измерений выходных параметров ОИ состоит из двухпроводной линии 9, высоковольтного кабеля 10, осциллографа 11 и киловольтметра 12.

Для защиты рабочего персонала от ионизирующего излучения используется радиационная защита 13, состоящая из экранов и кожухов, прикрывающих фланцевые стыки вакуумной камеры 1. С целью проведения наблюдения за процессом появления разрядов на ОИ, на вакуумной камере 1 предусмотрено смотровое окно 14.

Заявленный способ «Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства» осуществляется следующим образом:

- ОИ размещают внутри вакуумной камеры. В зависимости от конструктивных особенностей и вида ОИ на поворотный стол 6 устанавливают стойку для ОИ 7 или приспособление для позиционирования 9;

- в случае, когда ОИ является элементом конструкции, то его устанавливают в стойку для ОИ 7;

- в случае, когда ОИ представляет из себя радиоэлектронное оборудование, которое будет находиться в рабочем состоянии на период проведения испытаний, то его устанавливают на приспособление для позиционирования 9.

Для каждого из случаев оснастку заземляют через гермоплату 15 вакуумной камеры, затем подключают к ОИ систему измерения выходных параметров. В каждом из выше описанных случаев система измерения выходных параметров подключается по стандартной схеме. Высоковольтный кабель 10 крепится к ОИ через гермоплату 15 вакуумной камеры, киловольтметр 12 находится вне вакуумной камеры. Один конец двухпроводной линии 9 подключают ко входу осциллографа 11, а второй оставляют без нагрузки, на холостом ходу. Этот конец экранируют и крепят на изоляторах 16, таким образом, что бы он находился от ОИ на требуемом расстоянии.

По окончанию установки системы измерения выходных параметров ОИ секции вакуумной камеры 1 стыкуют друг с другом, устанавливают радиационную защиту 13, закрывающую фланцевые стыки секций вакуумной камеры экранами и кожухами для обеспечения защиты рабочего персонала от ионизирующего излучения.

Далее запускают процесс вакуумирования камеры с использованием системы автоматической откачки с функцией контроля величины вакуума 2.

По достижению предельного остаточного давления на стойке управления ИПЭ 4 задают требуемые характеристики излучаемого пучка электронной пушки 5. Далее начинают процесс облучения ОИ с одновременной фиксацией выходных параметров ОИ.

Испытания проводятся при воздействии потока электронов в двух режимах: «сканирование» и «прожектор».

В режиме «сканирование» облучают ОИ с заданной частотой, углом и амплитудой либо всей поверхности ОИ, либо определенного участка ОИ, где наблюдалось нештатное поведение ОИ или места с наибольшим уровнем возможного возникновения разряда. Напряжение на ИПЭ устанавливают от 5 кВ до 50 кВ и изменяют с N шагом, например 250 В. Фиксируют выходные параметры ОИ на каждом выбранном напряжении ИПЭ с использованием системы измерения выходных параметров ОИ.

Режим «прожектор» предусматривает постоянный однородный поток электронов. ОИ облучают полностью. Напряжение на ИПЭ также устанавливают от 5 кВ до 50 кВ и изменяют с N шагом, например 250 В. Фиксируют выходные параметры ОИ на каждом выбранном значении напряжении ИПЭ с использованием системы измерения выходных параметров ОИ. Каждый из вышеуказанных режимов позволяет изменять характеристики луча потока электронов ОИ.

Порядок облучения определяется в зависимости от ОИ.

По окончанию проверки ОИ в плоскости, перпендикулярной относительно оси ИПЭ, его поворачивают относительно ИПЭ от 0 до ±270 градусов в зависимости от ОИ и повторяют вышеуказанные этапы облучения ОИ с фиксацией выходных параметров ОИ.

Заявленный способ позволит: повысить точность результатов измерений; снизить вероятность возникновения электростатических разрядов на ЭК, материалах, покрытиях, РЭО; снизить уровень электростатического потенциала, накапливаемого на ЭК и РЭО путем выбора применяемого материала или конструктивных доработок; повысить устойчивость РЭО и в целом КА в условиях воздействия ФКП (вакуум, поток электронов с энергией до 50 кэВ) за счет возможности облучения потоком электронов определенного места ОИ, регулируя частоту, угол, диаметр и амплитуду луча потока электронов, таким образом имитируя естественный процесс воздействия ФКП; перемещать ОИ в процессе испытаний относительно ИПЭ. Облучение всех граней ОИ происходит в одном цикле, без разгерметизации камеры, что позволяет не прерывать процесс испытаний, что в большей степени соответствует реальным условиям, в которых находится аппарат на орбите, таким образом повышается достоверность испытаний. Также необходимо отметить, что предлагаемый способ измерения выходных параметров ОИ позволит получать действительное значение характеристик электростатических разрядов и регистрировать параметры электростатического разряда на ОИ.

Похожие патенты RU2791950C1

название год авторы номер документа
СТЕНД ДЛЯ ТЕПЛОВЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ ОБЪЕКТОВ 1999
  • Звездов Ю.П.
  • Зяблов В.А.
  • Соловьев М.М.
RU2172709C2
СТЕНД ДЛЯ ТЕПЛОВЫХ ИСПЫТАНИЙ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ КОСМИЧЕСКИХ АППАРАТОВ 2014
  • Егоров Константин Владиленович
  • Алексеев Владимир Антонович
  • Копылов Виктор Захарович
  • Карабан Леонид Васильевич
RU2553411C1
Устройство для радиационного облучения и испытания надежности объектов авиакосмического назначения к воздействию потоков нейтронов с использованием синхроциклотрона 2021
  • Воробьев Александр Сергеевич
  • Иванов Евгений Михайлович
  • Михеев Гелий Федорович
  • Щербаков Олег Алексеевич
  • Козюков Александр Евгеньевич
  • Чубунов Павел Александрович
  • Бычков Антон Сергеевич
RU2761406C1
Способ испытаний радиоэлектронной аппаратуры на стойкость к воздействию импульса гамма-излучения 2022
  • Вдовин Сергей Владимирович
  • Бахматов Евгений Юрьевич
  • Койнов Дмитрий Васильевич
  • Пикалов Георгий Львович
  • Улькин Сергей Станиславович
RU2778744C1
УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО ОБЛУЧЕНИЯ И ИСПЫТАНИЙ НАДЕЖНОСТИ ЭЛЕКТРОНИКИ АВИАКОСМИЧЕСКОГО НАЗНАЧЕНИЯ К ВОЗДЕЙСТВИЮ НЕЙТРОНОВ С ИСПОЛЬЗОВАНИЕМ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ 2017
  • Воробьев Александр Сергеевич
  • Иванов Евгений Михайлович
  • Михеев Гелий Федорович
  • Щербаков Олег Алексеевич
  • Анашин Василий Сергеевич
  • Козюков Александр Евгеньевич
  • Бакиров Линарис Раушатович
RU2668997C1
МИКРОСТРУКТУРНАЯ СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2010
  • Урличич Юрий Матэвич
  • Жуков Андрей Александрович
  • Селиванов Арнольд Сергеевич
  • Корпухин Андрей Сергеевич
  • Дмитриев Александр Сергеевич
RU2465181C2
Способ испытаний источников вторичного электрического питания радиоэлектронной аппаратуры на стойкость к воздействию импульса гамма-излучения моделирующих установок 2020
  • Бахматов Евгений Юрьевич
  • Вдовин Сергей Владимирович
  • Койнов Дмитрий Васильевич
  • Пикалов Георгий Львович
  • Улькин Сергей Станиславович
  • Шалай Максим Константинович
RU2745255C1
СТЕНД ДЛЯ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ 2005
  • Севастьянов Николай Николаевич
  • Верхотуров Владимир Иванович
  • Зяблов Валерий Аркадьевич
  • Щербаков Эдуард Викторович
RU2302983C1
Стенд для проведения тепловакуумных испытаний космических аппаратов в условиях, имитирующих натурные 2020
  • Давиденко Дмитрий Валерьевич
  • Зяблов Валерий Аркадьевич
  • Щербаков Эдуард Викторович
RU2734681C1
СПОСОБ ДЛЯ ОЦЕНКИ ПОТЕРИ МАССЫ И СОДЕРЖАНИЯ ЛЕТУЧИХ КОНДЕНСИРУЮЩИХСЯ ВЕЩЕСТВ ПРИ ВАКУУМНО-ТЕПЛОВОМ ВОЗДЕЙСТВИИ НА НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ В СОЧЕТАНИИ С ВЫСОКОЭНЕРГЕТИЧЕСКИМ ИЗЛУЧЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Башков Валерий Михайлович
  • Береговский Владимир Васильевич
  • Калашников Евгений Валентинович
  • Михалев Павел Андреевич
RU2468970C2

Иллюстрации к изобретению RU 2 791 950 C1

Реферат патента 2023 года Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства и устройство для его реализации

Изобретение относится к испытательной технике и может быть использовано в наземных испытаниях элементов конструкций (ЭК), материалов и покрытий, а также радиоэлектронного оборудования (РЭО) в условиях воздействия факторов космического пространства (ФКП) на низкоорбитальные космические аппараты (НКА). Сущность заявленного способа заключается в следующем. Образец испытаний (ОИ) размещают внутри вакуумной камеры, прошедшей вакуумирование с контролем величины вакуума, задают требуемые характеристики излучаемого пучка электронной пушки на стойке управления имитатора потока электронов (ИПЭ), облучают потоком электронов ОИ. При этом в случае, когда ОИ является элементом конструкции, его устанавливают на стойку для ОИ; в случае, когда ОИ является РЭО, его устанавливают на приспособление для позиционирования; для каждого из случаев оснастку заземляют через гермоплату вакуумной камеры, затем подключают к ОИ систему измерения выходных параметров, после закрытия вакуумной камеры устанавливают радиационную защиту, закрывающую фланцевые стыки секций вакуумной камеры экранами и кожухами, когда ОИ находится под вакуумом, используя систему фокусировки ИПЭ, устанавливают ток и диаметр луча потока электронов на ОИ, ИПЭ включают в режиме «прожектор», облучая ОИ полностью, и в режиме «сканирование», когда облучение происходит с частотой, установленной оператором. Порядок облучения ОИ определяется в зависимости от ОИ, при этом на каждом этапе облучения фиксируют выходные параметры ОИ при напряжении от 5 кВ до 50 кВ с N шагом, с использованием системы измерения выходных параметров ОИ. Далее ОИ поворачивают относительно ИПЭ от 0 до 270 градусов в зависимости от ОИ и повторяют вышеуказанные этапы облучения ОИ с фиксацией выходных параметров ОИ. Сущность заявленного устройства достигается за счет того, что Стенд ФМ ФКП состоит из вакуумной камеры с системой автоматизированной откачки с функцией контроля и измерения вакуума; ИПЭ, состоящего из стойки управления имитатора потока электронов и электронной пушки, позволяющей непрерывно облучать потоком электронов ОИ, находящийся внутри полезного объема вакуумной камеры, поворотного стола внутри вакуумной камеры, на который в зависимости от конструктивных особенностей и вида объекта испытаний устанавливается заземленная через гермоплату вакуумной камеры оснастка в виде стойки для ОИ или приспособления для позиционирования, также стенд снабжен системой измерения выходных параметров ОИ, флуоресцентный экран для контроля положения проекции луча потока электронов, а для защиты рабочего персонала от ионизирующего излучения используется радиационная защита, состоящая из экранов и кожухов, закрывающих фланцевые стыки вакуумной камеры. Технический результат заключается в разработке способа определения реальных параметров электризации ЭК, материалов и покрытий, и оценки работоспособности РЭО в условиях воздействия вышеуказанных ФКП. 2 н. и 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 791 950 C1

1. Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства, заключающийся в том, что объект испытаний (ОИ) размещают внутри вакуумной камеры, проводят вакуумирование камеры и контролируют величину вакуума с использованием системы автоматизированной откачки, задают требуемые характеристики пучка, излучаемого электронной пушкой, на стойке управления имитатора потока электронов (ИПЭ), облучают потоком электронов объект испытания, отличающийся тем, что на поворотный стол, в случае, когда ОИ является элементом конструкции, его устанавливают на стойку для ОИ, а в случае, когда ОИ является радиоэлектронным оборудованием (РЭО), устанавливают на приспособление для позиционирования, и для каждого из случаев оснастку заземляют через гермоплату вакуумной камеры, затем подключают к ОИ систему измерения выходных параметров, после закрытия вакуумной камеры устанавливают радиационную защиту, закрывающую фланцевые стыки секций вакуумной камеры экранами и кожухами, когда ОИ находится под вакуумом, используя систему управления ИПЭ, устанавливают ток и диаметр луча потока электронов на ОИ, ИПЭ включают в режиме «прожектор», облучая ОИ полностью, и в режиме «сканирование», когда облучение происходит с частотой, установленной оператором, порядок облучения ОИ определяется в зависимости от ОИ, при этом на каждом этапе облучения фиксируют выходные параметры ОИ при напряжении от 5 кВ до 50 кВ с N шагом, с использованием системы измерения выходных параметров ОИ, далее ОИ поворачивают относительно ИПЭ от 0 до 270 градусов в зависимости от ОИ и повторяют вышеуказанные этапы облучения ОИ с фиксацией выходных параметров ОИ.

2. Стенд физического моделирования факторов космического пространства состоит из вакуумной камеры с системой автоматизированной откачки с функцией контроля и измерения вакуума, имитатора потока электронов, состоящего из стойки управления имитатора потока электронов и электронной пушки, позволяющей непрерывно облучать потоком электронов объект испытания, находящийся внутри полезного объема вакуумной камеры, отличающийся тем, что внутри вакуумной камеры установлен поворотный стол, на который в зависимости от конструктивных особенностей и вида объекта испытаний устанавливается заземленная через гермоплату вакуумной камеры оснастка в виде стойки для ОИ или приспособления для позиционирования, также стенд снабжен системой измерения выходных параметров ОИ, а для защиты рабочего персонала от ионизирующего излучения используется радиационная защита, состоящая из экранов и кожухов, прикрывающих фланцевые стыки вакуумной камеры.

3. Стенд по п. 2, отличающийся тем, что система измерений выходных параметров ОИ состоит из двухпроводной линии, высоковольтного кабеля, осциллографа и киловольтметра.

Документы, цитированные в отчете о поиске Патент 2023 года RU2791950C1

Способ расчетно-экспериментальной оценки радиационной стойкости интегральных схем к воздействию отдельных заряженных частиц, основанный на локальном лазерном облучении 2017
  • Чумаков Александр Иннокентьевич
  • Маврицкий Олег Борисович
  • Егоров Андрей Николаевич
  • Печенкин Александр Александрович
  • Савченков Дмитрий Владимирович
  • Новиков Александр Анатольевич
  • Васильев Алексей Леонидович
  • Яненко Андрей Викторович
RU2661556C1
Способ испытания крупногабаритных объектов, содержащих протяженные кабельные линии, на соответствие требованиям по стойкости к воздействию электромагнитного импульса 2021
  • Агапов Евгений Васильевич
  • Давыдов Андрей Александрович
  • Иванов Евгений Викторович
  • Красноперов Дмитрий Борисович
RU2759494C1
СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ЭЛЕКТРОСТАТИЧЕСКИМ РАЗРЯДАМ 1999
  • Анисимов А.В.
  • Новоселов Ю.И.
RU2157545C1
CN 203643528 U, 11.06.2014
CN 103995192 A, 20.08.2014
WO 2012054710 A1, 26.04.2012.

RU 2 791 950 C1

Авторы

Сочивко Алексей Алексеевич

Бобрышев Виктор Геннадьевич

Васюшина Анна Владимировна

Комяков Александр Владимирович

Соланов Евгений Иванович

Демидов Алексей Алексеевич

Кудашов Евгений Викторович

Даты

2023-03-14Публикация

2022-03-28Подача