СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ЭЛЕКТРОСТАТИЧЕСКИМ РАЗРЯДАМ Российский патент 2000 года по МПК G01R31/28 G05F1/56 

Описание патента на изобретение RU2157545C1

Изобретение относится к технике испытаний и может быть использовано при испытаниях космических аппаратов (КА).

Известен способ испытания элементов радиоэлектронной аппаратуры (РЭА) космических аппаратов, предусматривающий размещение их на выводимом в космическое пространство аппарате [1].

Недостатком такого способа является его чрезвычайно высокая стоимость.

Наиболее близким по своей технической сущности к предлагаемому изобретению является способ испытания радиоэлектронной аппаратуры на стойкость к электростатическим разрядам, предусматривающий испытательное воздействие на объект электростатического разряда с помощью моделирующей установки, выбранный в качестве прототипа [2].

Недостатком указанного способа является низкая достоверность результатов испытания, которая обусловлена недостаточно полным воспроизведением условий функционирования РЭА космического аппарата на орбите. Данный способ не учитывает воздействия низкоинтенсивного ионизирующего, излучения космического пространства на параметры радиоэлементов, которое имеет место в действительности.

Техническим результатом, достигаемым данным изобретением, является повышение достоверности результатов испытания за счет более полного воспроизведения условий функционирования радиоэлектронной аппаратуры космического аппарата.

Указанный технический результат достигается тем, что в известном способе испытания радиоэлектронной аппаратуры на стойкость к электростатическим разрядам, при котором производят испытательное воздействие электростатических разрядов с помощью моделирующей установки, предварительно производят облучение элементов радиоэлектронной аппаратуры стационарным ионизирующим излучением, а затем их отжиг во включенном статическом состоянии до установки их в аппаратуру и ее сборки, причем требуемую поглощенную дозу ионизирующего излучения определяют по формуле: D=Pср•Tс, где D - поглощенная доза, рад(Si); Pср - средняя мощность поглощенной дозы при функционировании РЭА в космосе, рад(Si)/с; Tс - требуемый срок активного существования космического аппарата, с,
а длительность отжига определяют по формуле

где Tс - требуемый срок активного существования космического аппарата, с;
Eа - энергия активации радиационного дефекта, эВ;
к - постоянная Больцмана, эВ/К;
Tо - рабочая температура радиоэлемента, К;
Tи - температура отжига при испытаниях, К.

После облучения и отжига техническое состояние радиоэлементов и собранной из них аппаратуры становится близким к такому, в каком они находились бы при долговременном функционировании в космосе, и отклик РЭА на последующее испытательное воздействие электростатических разрядов моделирующей установки должен быть близок к отклику аппаратуры космического аппарата, действительно функционировавшему в условиях космоса. Таким образом повышается достоверность результатов испытания.

Техническая сущность изобретения заключается в следующем.

Испытывать на стойкость к электростатическим разрядам космический аппарат, не подвергавшийся воздействию низкоинтенсивного ионизирующего излучения космического пространства, методически неверно, поскольку полученные при этом оценки стойкости будут отличаться от уровня стойкости космического аппарата в реальных условиях космоса. Необходимо моделировать воздействие низкоинтенсивных ионизирующих излучений космического пространства на радиоэлектронную аппаратуру КА. Для этого следует облучить РЭА в поле ионизирующего излучения с дозой, равной дозе космического ионизирующего излучения, поглощаемой элементами аппаратуры за срок активного существования космического аппарата, и произвести отжиг дефектов, который также имеет место в действительности. Для проведения испытаний в приемлемые сроки необходимо форсировать процессы облучения и отжига, увеличивая мощность дозы излучения и температуру отжига радиационных дефектов.

Длительность отжига радиационных дефектов определяется их энергией активации. Большинство радиоэлементов современной электроники выполнены из кремния и содержат в своих структурах области из окиси кремния, в которых и на границах которых и происходит накопление радиационных дефектов. Для двух основных типов дефектов в окиси кремния энергия активации имеет значения 0.9 эВ и 1.6 эВ. При нормальной температуре эксплуатации интегральных микросхем 25oC время релаксации (отжига) указанных дефектов составляет 4.0•106 и 3.3•1018 мин соответственно. При максимально допустимой температуре для микросхем в керамических корпусах 125oC длительности релаксации имеют значения 5.7•102 и 4.8•1011 мин соответственно. Таким образом, заметно, что релаксация дефектов с энергией активации 1.6 эВ даже за несколько лет работы при нормальной температуре будет незначительной и техническое состояние электронных приборов будет определяться интенсивностью конкурирующих процессов накопления и отжига дефектов с энергией активации 0.9 эВ. Поэтому при испытаниях достаточно отжечь только их. По закону Аррениуса постоянная отжига определяется выражением
λ = A•exp(-Ea/k•T), (1)
где A - масштабный коэффициент, 1/с;
Eа - энергия активации радиационного дефекта, эВ;
к - постоянная Больцмана, эВ/К;
T - абсолютная температура, К.

Форсируя отжиг повышением температуры, можно получить ускорение отжига, определяемое соотношением:

где Tо - рабочая температура. К;
Tи - температура отжига при испытаниях, К.

Таким образом, ускоренный отжиг займет промежуток времени, определяемый соотношением

Облучение радиоэлементов и отжиг радиационных дефектов в предлагаемом способе производится до установки их в аппаратуру и ее сборки, поскольку отжиг радиоэлементов в составе собранных аппаратурных блоков недопустим из-за наличия в них радиотехнических материалов, не выдерживающих требуемых температур отжига, как, например, поливинилхлорида, имеющего температуру размягчения 60oC. При снижении температуры отжига увеличивается требуемое на него время до неприемлемых значений. Облучение и отжиг радиоэлементов предлагается производить во включенном статическом состоянии, поскольку таким образом реализуется наиболее жесткий из возможных режимов их функционирования.

Предлагаемый способ реализуется следующим образом:
1. Облучают радиоэлементы, комплектующие аппаратуру космического аппарата, предназначенного для испытаний, в установке стационарного ионизирующего излучения во включенном статическом состоянии. При этом требуемую поглощенную дозу облучения определяют по формуле D = Pср • TС, рад(Si), где D - поглощенная доза, рад(Si); Pср - средняя мощность поглощенной дозы при функционировании РЭА в космосе, рад(Si)/с; Tс - требуемый срок активного существования космического аппарата, с.

2. Облученные радиоэлементы отжигают в том же электрическом режиме, что и при облучении, при максимально допустимой температуре в течение времени, определяемого по формуле (3).

3. Проверяют исправность элементов, при обнаружении элементов, вышедших из строя, их заменяют аналогами из других серий и повторяют действия по пп. 1,2.

4. Устанавливают исправные элементы в аппаратуру и осуществляют ее сборку.

5. Производят испытательное воздействие с помощью установки, моделирующей электростатические разряды.

Таким образом осуществляется моделирование воздействия на радиоэлектронную аппаратуру низкоинтенсивного ионизирующего излучения космического пространства. Последующее испытательное воздействие электростатических разрядов на аппаратуру производится при таком ее техническом состоянии, которое близко к техническому состоянию аппаратуры, облучаемой длительный срок излучениями космоса, что повышает достоверность результатов испытаний.

СПИСОК ЛИТЕРАТУРЫ
1. Испытания ИС на воздействие радиации. Радиоэлектроника за рубежом. Выпуск 25 (1153), Москва, 1989 г. УДК 621.3.049.77.019.3: 539.16.04.

2. Электризация геостационарных спутников. Сер. Исследования по геомагнетизму, аэрономии и физике Солнца, Москва, "Наука ", 1989 г. Вып. 86.

Похожие патенты RU2157545C1

название год авторы номер документа
Способ испытаний источников вторичного электрического питания радиоэлектронной аппаратуры на стойкость к воздействию импульса гамма-излучения моделирующих установок 2020
  • Бахматов Евгений Юрьевич
  • Вдовин Сергей Владимирович
  • Койнов Дмитрий Васильевич
  • Пикалов Георгий Львович
  • Улькин Сергей Станиславович
  • Шалай Максим Константинович
RU2745255C1
Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства и устройство для его реализации 2022
  • Сочивко Алексей Алексеевич
  • Бобрышев Виктор Геннадьевич
  • Васюшина Анна Владимировна
  • Комяков Александр Владимирович
  • Соланов Евгений Иванович
  • Демидов Алексей Алексеевич
  • Кудашов Евгений Викторович
RU2791950C1
Способ испытаний радиоэлектронной аппаратуры на стойкость к воздействию импульса гамма-излучения 2022
  • Вдовин Сергей Владимирович
  • Бахматов Евгений Юрьевич
  • Койнов Дмитрий Васильевич
  • Пикалов Георгий Львович
  • Улькин Сергей Станиславович
RU2778744C1
УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2000
  • Дубинов А.Е.
  • Петровский В.П.
  • Холод С.В.
RU2193828C2
Способ поблочных испытаний радиоэлектронной аппаратуры на стойкость к воздействию импульсного гамма-излучения на моделирующих установках 2021
  • Бахматов Евгений Юрьевич
  • Вдовин Сергей Владимирович
  • Есипов Дмитрий Николаевич
  • Койнов Дмитрий Васильевич
  • Пикалов Георгий Львович
  • Улькин Сергей Станиславович
  • Шалай Максим Константинович
RU2783978C1
СПОСОБ РАЗБРАКОВКИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ ПО РАДИАЦИОННОЙ СТОЙКОСТИ 2003
  • Зыков В.М.
  • Юнда Н.Т.
  • Арчаков В.Г.
  • Шеремет А.В.
RU2253875C2
СПОСОБ МОДЕЛИРОВАНИЯ ВОЗДЕЙСТВИЯ ИМПУЛЬСНОГО ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ НА КОМПЛИМЕНТАРНЫХ СТРУКТУРАХ "МЕТАЛЛ-ОКИСЕЛ-ПОЛУПРОВОДНИК" 1998
  • Новоселов Ю.И.
  • Анисимов А.В.
  • Койнов Д.В.
RU2174691C2
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ГАММА-КВАНТОВ 2012
  • Пикалов Георгий Львович
  • Махмудов Каримжон Бобожонович
  • Чуприн Игорь Александрович
RU2497157C1
СПОСОБ ФОРМИРОВАНИЯ ПОЛЯ ГАММА-НЕЙТРОННОГО ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРАХ 2009
  • Пикалов Георгий Львович
  • Рымарь Александр Иванович
  • Краснокутский Игорь Сергеевич
  • Костяев Сергей Валентинович
  • Комаров Николай Алексеевич
RU2404467C1
УСТРОЙСТВО ДЛЯ ИМИТАЦИИ ТОКОВ МОЛНИИ 1995
  • Матвеев Д.Д.
  • Медведев В.Л.
  • Плыгач В.А.
  • Соловаров В.И.
  • Хилинский Ю.А.
RU2110885C1

Реферат патента 2000 года СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ЭЛЕКТРОСТАТИЧЕСКИМ РАЗРЯДАМ

Изобретение относится к технике испытаний и может быть использовано при испытаниях космических аппаратов. Техническим результатом, достигаемым данным изобретением, является повышение достоверности результатов испытаний за счет более полного воспроизведения условий функционирования радиоэлектронной аппаратуры (РЭА) космического аппарата. Указанный технический результат достигается путем произведения испытательного воздействия электростатических разрядов с помощью моделирующей установки. Предварительно производят облучение элементов радиоэлектронной аппаратуры стационарным ионизирующим излучением, а затем их отжиг во включенном статическом состоянии до установки их в аппаратуру и ее сборки, причем поглощенную дозу ионизирующего излучения определяют по определенной формуле.

Формула изобретения RU 2 157 545 C1

Способ испытания радиоэлектронной аппаратуры (РЭА) космических аппаратов на стойкость к электростатическим разрядам, при котором производят испытательное воздействие электростатических разрядов с помощью моделирующей установки, отличающийся тем, что предварительно производят облучение элементов радиоэлектронной аппаратуры стационарным ионизирующим излучением, а затем их отжиг во включенном статическом состоянии до установки их в аппаратуру и ее сборки, причем требуемую поглощенную дозу ионизирующего излучения определяют по формуле D = Рср.•Тс, где D - поглощенная доза, рад(Si); Рср. - средняя мощность поглощенной дозы при функционировании РЭА в космосе, рад(Si)/с; Тс - требуемый срок активного существования космического аппарата, с, а длительность отжига определяют по формуле:

где Тс - требуемый срок активного существования космического аппарата, с;
Еа - энергия активации радиационного дефекта, эВ;
к - постоянная Больцмана, эВ/К;
То - рабочая температура радиоэлемента, К;
Ти - температура отжига при испытаниях, К.

Документы, цитированные в отчете о поиске Патент 2000 года RU2157545C1

RU 2056480 С1, 27.05.1995
СПОСОБ УВЕЛИЧЕНИЯ СРОКОВ АКТИВНОГО СУЩЕСТВОВАНИЯ КОСМИЧЕСКИХ АППАРАТОВ 1996
RU2137682C1
СПОСОБ ОТБРАКОВОЧНЫХ ИСПЫТАНИЙ ПОДЛОЖКИ ИЗ ДИЭЛЕКТРИКА ИЛИ ПОЛУПРОВОДНИКА С ТОПОЛОГИЕЙ, ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ НА СТОЙКОСТЬ К ВНЕШНИМ ВОЗДЕЙСТВУЮЩИМ ФАКТОРАМ 1998
  • Борисов Ю.И.
  • Грошев А.С.
  • Юдин Б.Н.
  • Яфраков М.Ф.
RU2138830C1
Устройство для заполнения гидравлического пакера жидкостью 1975
  • Ванифатьев Владимир Иванович
  • Цырин Юрий Завельевич
  • Гайворонский Альберт Анатольевич
  • Дудаладов Анатолий Константинович
  • Галустянц Владилен Аршакович
SU599046A1
ЭЛЕВАТОР 1998
  • Артемкин А.А.
RU2149130C1

RU 2 157 545 C1

Авторы

Анисимов А.В.

Новоселов Ю.И.

Даты

2000-10-10Публикация

1999-11-12Подача