Изобретение относится к электронной технике, в частности, к полупроводниковым приборам и может быть использовано при разработке и изготовлении светоизлучающих диодов и различных устройств на их основе.
Известен светоизлучающий диод (см. JP 2010251792, МПК H01L 33/405, H01L 33/14 опубл. 04.11.2010), включающий подложку GaAs, брегговский отражатель, AlGalnP активную область, состоящую из светоизлучающей области, заключенной в два барьерных слоя с различным типом легирования, широкозонное окно, выполненное из GaP с небольшим содержанием Al и In или из AlxGa1-xAs, верхний электрод, расположенных над широкозонным окном и нижний электрод на тыльной поверхности подложки.
Недостатком известного светоизлучающего диода являются большие оптические потери излучения, прозрачного для брегговского отражателя и поглощающегося в подложке GaAs.
Известен светоизлучающий диод (см. US 8101447, МПК H01L 33/20, H01L 33/10, опубл. 24.01.2012), включающий подложку GaAs, SiC, Si или AlN с вытравленными лунками, слой А3В5 n-типа проводимости, активную область, слой А3В5 р-типа проводимости, расположенные в вытравленных лунках, верхний электрод р-типа проводимости, смонтированный на проводящую подложку с отражателем из Au, Al или Cu и нижний электрод n-типа проводимости на поверхности слоя АЗВ5 n-типа проводимости.
Недостатком известного способа изготовления светоизлучающего диода являются оптические потери излучения, отражающегося от металлического отражателя из Au, Al или Cu, обладающего коэффициентом отражения «90%.
Известен светоизлучающий диод (см. KR 101393606, МПК H01L 33/10, опубл. 17.06.2014), включающий подложку GaAs, первый брегговский отражатель, светоизлучающую гетероструктуру, второй брегговский отражатель, верхний электрод на поверхности второго брегговского отражателя, нижний электрод на тыльной поверхности подложки GaAs. При этом брегговские отражатели состоят из слоев AlAs и AlGaAs с содержанием галлия в AlGaAs большем, чем алюминия. Преимуществом известного светоизлучающего диода является снижение оптических потерь генерированного излучения путем отражения излучения, распространяющегося в сторону подложки, от первого брегговского отражателя и излучения, распространяющегося в сторону верхнего электрода, от второго брегговского отражателя.
Недостатками известного светоизлучающего диода являются высокие оптические потери излучения, прозрачного для брегговских отражателей, а также поглощающегося в подложке и в верхнем электроде.
Известен гетероструктурный светоизлучающий диод (см. JP 4952883, МПК H01S 5/183, опубл. 13.06.2012), включающий подложку-носитель со слоем металлического отражателя из Au или Cr, первый барьерный слой, активную область, второй барьерный слой, контактный слой, верхний электрод кольцевой формы на поверхности контактного слоя, сплошной нижний электрод на тыльной поверхности подложки-носителя.
Недостатком известного гетероструктурного светоизлучающего диода являются оптические потери излучения, отражающегося от металлического отражателя из Au или Cr с коэффициентом отражения ≈90%.
Известен светоизлучающий диод (см. KR 1020120014750, МПК H01L 33/10, опубл. 20.02.2012), включающий подложку-носитель, слой металлического отражателя, брегговский отражатель, светоизлучающую гетероструктуру с активной областью, прозрачный проводящий слой, фронтальный защитный слой.
Недостатком известного светоизлучающего диода являются оптические потери излучения, прозрачного для брегговского отражателя и отражающегося от металлического отражателя с коэффициентом отражения ≈90%.
Известен светоизлучающий диод (см. CN 112410349, МПК H01L 33/10, H01L 33/00, опубл. 17.09.2021), включающий эпитаксиальную подложку, первый брегговский отражатель, n-AlInP барьерный слой, светоизлучающий слой, р-AlInP барьерный слой, второй брегговский отражатель, p-GaP контактный слой, р-электрод на поверхности p-GaP, n-электрод на тыльной поверхности подложки. При этом длина волны отражения первого брегговского отражателя равна длине волны второго брегговского отражателя, минимальное расстояние между первым брегговским отражателем и светоизлучающим слоем равно расстоянию между светоизлучающим слоем и вторым брегговским отражателем.
Недостатком известного светоизлучающего диода является увеличение последовательного сопротивления гетероструктуры при включении в ее состав более одного брегговского отражателя, а также оптические потери отражения, прозрачного для первого и второго брегговских отражателей.
Известен гетероструктурный инфракрасный светоизлучающий диод (см. KR 101499951, МПК H01L 33/20, H01L 33/22, H01L 33/36, опубл. 06.03.2015), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Инфракрасный светоизлучающий диод-прототип включает подложку-носитель с металлическим отражателем, многослойную светоизлучающую AlGaAs/GaAs гетероструктуру с активной областью, верхний электрод на поверхности гетероструктуры, световыводящую поверхность гетероструктуры и нижний электрод на тыльной поверхности подложки-носителя, при этом гетероструктура AlGaAs/GaAs может включать брегговский отражатель, расположенный между активной областью и подложкой.
Недостатком известного гетероструктурного инфракрасного светоизлучающего диода-прототипа являются нежелательные оптические потери излучения, прозрачного для брегговского отражателя, а также излучения, отражающегося от металлического отражателя с коэффициентом отражения ≈90%.
Задачей настоящего изобретения является разработка гетероструктурного инфракрасного светоизлучающего диода, который бы имел сниженные оптические потери излучения и, тем самым, увеличенный внешний квантовый выход светодиода.
Поставленная задача достигается тем, что гетероструктурный инфракрасный светоизлучающий диод включает подложку-носитель с металлическим отражателем, многослойную светоизлучающую AlGaAs/GaAs гетероструктуру с активной областью и брегговским отражателем, расположенным между активной областью и подложкой-носителем, верхний электрод на поверхности гетероструктуры, световыводящую поверхность гетероструктуры и нижний электрод на тыльной поверхности подложки-носителя. Новым является то, что между брегговским отражателем и подложкой-носителем расположен слой дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As.
Слой дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As может быть выполнен толщиной (250-400) нм.
Подложка-носитель может быть выполнена из полупроводникового материала, например, из GaAs или из Si.
Подложка-носитель может быть выполнена из металла, например, из Ag или из Cu.
Металлический отражатель может быть выполнен из Al или Ag.
Снижение оптических потерь излучения, генерированного в активной области светоизлучающего диода и распространяющегося в сторону подложки-носителя, достигается путем отражения последовательно от трех отражателей. 90% лучей, падающих на брегговский отражатель перпендикулярно и под углами, близкими к 90 угловых градусов, к плоскостям эпитаксиальных слоев гетероструктуры AlGaAs/GaAs, отражаются от брегговского отражателя. При уменьшении угла падения увеличивается доля лучей, проходящих сквозь брегговский отражатель без отражения. Для отражения лучей, прошедших сквозь брегговский отражатель, в гетероструктуре между брегговским отражателем и подложкой-носителем расположен слой дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As, предпочтительно толщиной (250-400) нм. Снижение оптических потерь достигается при отражении от слоя Al0.9Ga0.1As латеральных лучей, распространяющихся от р-n перехода под углами менее (30-35) угловых градусов к гетерограницам, то есть лучей, для которых первичный брегговский отражатель является практически прозрачным. Излучение, прошедшее сквозь брегговский отражатель и слой дополнительного отражателя Al0.9Ga0.1As, отражается от металлического отражателя из Al или из Ag с коэффициентом отражения ≈90%.
При толщине слоя Al0.9Ga0.1As менее 250 нм увеличиваются оптические потери излучения. Толщина слоя Al0.9Ga0.1As более 400 нм технологически нецелесообразна.
Использование подложки-носителя из полупроводникового материала, такого, как, например, GaAs или Si снижает количество дефектов в гетероструктуре и увеличивает выход годных элементов за счет идентичных электрических параметров материала гетероструктуры и подложки-носителя.
Использование подложки-носителя из металла такого, как, например, Ag или Cu обеспечивает теплоотвод от светоизлучающего диода в широком диапазоне рабочих токов (1-3) А и, соответственно, ведет к увеличению мощности прибора.
Настоящий гетероструктурный инфракрасный светоизлучающий диод включает последовательно расположенные нижний электрод 1, подложку-носитель 2 из полупроводникового материала (GaAs, Si) или из металла (Ag, Cu), омический контакт 3 к подложке-носителю 2, металлический отражатель 4, выполненный из слоя Al или Ag, многослойную светоизлучающую AlGaAs/GaAs гетероструктуру 5, омический контакт 6 к тыльной поверхности гетероструктуры 5 (см. чертеж). При этом гетероструктура 5 включает последовательно расположенные слои дополнительного отражателя 7 на основе широкозонного слоя Al0.9Ga0.1As толщиной (250-400) нм, брегговского отражателя 8, активной области 9, световыводящую поверхность 10 - поверхность многослойной светоизлучающей гетероструктуры 5, свободную от верхнего электрода 11.
Гетероструктурный инфракрасный светоизлучающий диод работает следующим образом. Излучение генерируется в активной области 9 гетероструктуры 5 AlGaAs/GaAs светоизлучающего диода. Часть излучения, распространяющаяся в сторону световыводящей поверхности 10 выводится из светодиода. Остальное излучение, распространяющееся в сторону подложки-носителя 2 в телесном угле ±20 угловых градусов к нормали, отражается от брэгговского отражателя 8, и часть этого отраженного излучения выходит из кристалла. Остальное излучение проходит сквозь брэгговский отражатель 8. Часть (~50%) прошедшего излучения, падающего на гетерограницу с дополнительным слоем 7 Al0.9Ga0.1As под углами, меньшими угла полного внутреннего отражения, зеркально отражается от гетерограницы и частично выводится из кристалла. Остальная часть излучения проходит сквозь слой 7 Al0.9Ga0.1As и падает металлический отражатель 4, выполненный из Al или из Ад. Излучение, отраженное от металлического отражателя 4, выходит из светодиода.
Таки образом, добавление слоя Al0.9Ga0.1As увеличивает на 50% долю отраженных по направлению к световыводящей поверхности 10 лучей и увеличивает внешний квантовый выход светодиода.
Результатом настоящего технического решения стало снижение оптических потерь излучения светоизлучающего диода за счет встраивания дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As. Изготовленный гетероструктурный инфракрасный светоизлучающий диод имел сниженные оптические потери, и, соответственно, обладал высокой электролюминесценцией.
название | год | авторы | номер документа |
---|---|---|---|
ИНФРАКРАСНЫЙ СВЕТОДИОД | 2022 |
|
RU2796327C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИНФРАКРАСНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2022 |
|
RU2789243C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОИЗЛУЧАЮЩЕГО ДИОДА НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaAs/GaAs | 2022 |
|
RU2789241C1 |
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ УЗКОПОЛОСНОГО ИЗЛУЧЕНИЯ | 2023 |
|
RU2802547C1 |
ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ | 2023 |
|
RU2806342C1 |
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2023 |
|
RU2805290C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2021 |
|
RU2755769C1 |
КАСКАДНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2008 |
|
RU2382439C1 |
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ИСТОЧНИК СВЕТА | 2024 |
|
RU2819316C1 |
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2015 |
|
RU2605839C2 |
Изобретение относится к электронной технике, в частности к полупроводниковым приборам, и может быть использовано при разработке и изготовлении светоизлучающих диодов и различных устройств на их основе. Гетероструктурный инфракрасный светоизлучающий диод включает подложку-носитель с металлическим отражателем, слой дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As, брегговский отражатель, многослойную светоизлучающую AlGaAs/GaAs гетероструктуру, верхний электрод на поверхности гетероструктуры, световыводящую поверхность гетероструктуры и нижний электрод на тыльной поверхности подложки-носителя. Гетероструктурный инфракрасный светоизлучающий обладает сниженными оптическими потерями. Изобретение обеспечивает сниженные оптические потери излучения и, тем самым, увеличенный внешний квантовый выход светодиода. 7 з.п. ф-лы, 1 ил.
1. Гетероструктурный инфракрасный светоизлучающий диод, включающий подложку-носитель с металлическим отражателем, многослойную светоизлучающую AlGaAs/GaAs гетероструктуру с активной областью и брегговским отражателем, расположенным между активной областью и подложкой-носителем, верхний электрод на поверхности многослойной гетероструктуры, световыводящую поверхность гетероструктуры и нижний электрод на тыльной поверхности подложки-носителя, отличающийся тем, что между брегговским отражателем и подложкой-носителем расположен слой дополнительного отражателя на основе широкозонного слоя Al0.9Ga0.1As.
2. Светоизлучающий диод по п. 1, отличающийся тем, что слой дополнительного отражателя выполнен толщиной 250-400 нм.
3. Светоизлучающий диод по п. 1, отличающийся тем, что подложка-носитель выполнена из полупроводникового материала.
4. Светоизлучающий диод по п. 3, отличающийся тем, что подложка-носитель выполнена из GaAs.
5. Светоизлучающий диод по п. 3, отличающийся тем, что подложка-носитель выполнена из Si.
6. Светоизлучающий диод по п. 1, отличающийся тем, что подложка-носитель выполнена из металла.
7. Светоизлучающий диод по п. 6, отличающийся тем, что подложка-носитель выполнена из Ag или из Cu.
8. Светоизлучающий диод по п. 1, отличающийся тем, что металлический отражатель выполнен из Al или из Ag.
KR 101499951 A, 07.07.2009 | |||
СВЕТОДИОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2553828C1 |
ПОЛУПРОВОДНИКОВЫЙ ДИОД ДЛЯ ИНФРАКРАСНОГО ДИАПАЗОНА СПЕКТРА | 2002 |
|
RU2286618C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЦИФЕРБЛАТА НАСТОЛЬНЫХ, ИЛИ НАПОЛЬНЫХ, ИЛИ НАСТЕННЫХ СТРЕЛОЧНЫХ ЧАСОВ И СПОСОБ ИЗГОТОВЛЕНИЯ МЕТКИ ЦИФЕРБЛАТА НАСТОЛЬНЫХ, ИЛИ НАПОЛЬНЫХ, ИЛИ НАСТЕННЫХ СТРЕЛОЧНЫХ ЧАСОВ | 2007 |
|
RU2344456C1 |
DE 69124647 T2, 11.09.1997. |
Авторы
Даты
2023-04-04—Публикация
2022-10-13—Подача