Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно Российский патент 2023 года по МПК H01L39/16 

Описание патента на изобретение RU2794493C1

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов.

Как известно, работа сверхпроводящих коммутаторов (СПК), основана на переводе токонесущего элемента из сверхпроводящего состояния в нормальное. При этом перевод осуществляется превышением одного из критических параметров сверхпроводящего токонесущего элемента (температуры, плотности тока, напряженности магнитного поля) или некоторой совокупности их. При использовании таких переключателей требуется повышенный расход энергии и связанное с ним тепловыделение, что ограничивает их использование в наноразмерных микросхемах.

Известен способ перевода сверхпроводника в электронных устройствах из сверхпроводящего состояния в нормальное путем его локального нагрева JP 2013016664 [1] с использованием нагревательных элементов в виде меандра из фольги. Из-за ее малой теплоемкости и относительно большой площади обеспечивается как быстрый нагрев, так и быстрое охлаждение, что облегчает обратный перевод сверхпроводника из нормального состояние в сверхпроводящего. Этого достаточно для обеспечения работы тех аппаратов (МРТ), для которых этот способ используется в средствах аварийного отключения, но не применим в элементах логики, где требуется.

Известен способ перевода сверхпроводника в электронных устройствах из сверхпроводящего состояния в нормальное путем увеличения суммарного проходящего по нему тока до значений, превышающих величину критического (US 2015045228 [2]). Это достигается тем, что в дополнение к уже протекающему по сверхпроводнику току создается наведенный индукционный ток путем подачи тока управления на индукционную катушку, сформированную на поверхности сверхпроводника. Суперпозиция индуктивных токов и напряжения постоянного тока превышает критическую плотность тока материала сверхпроводника, который инициирует переход в нормальное состояние. Недостатками используемого метода является его неприменимость для микро и наноустройств с высокой плотностью функциональных элементов (например, процессоров) на основе сверхпроводников в связи с тем, что магнитное поле от используемой RF катушки захватывает большую площадь и объем существенно превышающие размеры функциональных элементов, что будет неизбежно вызывать ложные срабатывания многочисленных соседних, по отношению к управляемому, элементу. Кроме того, способ не обеспечивает снижения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное, что приводит к повышенному энергопотреблению и тепловыделению.

Наиболее близким по достигаемому результату - снижение энергопотребления и тепловыделения в электронных функциональных наноразмерных устройствах с высокой плотностью элементов - является способ уменьшения критического тока перевода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное, описанный в RU 2694799 [3]. Способ заключается в том, что в наноразмерном сверхпроводнике создается резистивная область, которая находится в нормальном состоянии при рабочей температуре. При этом происходит уменьшение прямого критического тока перехода сверхпроводящего нанопроводника из сверхпроводящего состояния в нормальное до уровня тока обратного перехода. Такое уменьшение критического тока происходит примерно в 5-10 раз по сравнению со сверхпроводниками, в которых эта резистивная область отсутствует. При этом происходит и уменьшение величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно. Недостатком известного способа является недостаточно высокое снижение энергопотребление, обусловленного необходимостью нагрева резисторов, включенных в тело нанопровода.

Заявляемый способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно направлен на снижение энергопотребления и тепловыделения в электронных функциональных наноразмерных устройствах с высокой плотностью элементов.

Указанный результат достигается тем, что способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно предусматривает определение критической температуры перехода материала нанопровода в сверхпроводящее состояние Тс и поддержание рабочей температуры нанопровода в пределах (0.85…0.9)⋅Тс.

Уменьшение величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно обуславливает снижение энергопотребления в любых функциональных элементах, использующих интегрированные сопротивления, например, переключателях, логических устройствах поскольку уменьшает значение токов срабатывания устройств за счет уменьшения тока прямого переключения (при уменьшении гистерезиса по току величина тока прямого перехода уменьшается, приближаясь к величине тока обратного перехода). Также существенным обстоятельством, обуславливающим важность минимизации величины гистерезиса по току, является тот факт, что обеспечение стабильности функционирования устройств переключения требуют реализации минимальной разницы токов прямого и обратного переходов при выборе параметров электрических схем, что гарантирует работу переключающегося элемента вблизи фиксированного заданного значения тока. Искомая рабочая температура для исключения гистерезиса по току выбирается из диапазона: (0.85…0.9)⋅Тс. Использование температуры меньше 0.85⋅Тс нецелесообразно, поскольку присутствует гистерезис. Использование температуры выше, чем 0.9⋅Тс, также нецелесообразно, поскольку в сверхпроводнике в этом диапазоне температур в сверхпроводящем состоянии до его перехода в нормальное состояние появляется небольшое сопротивление, так называемое остаточное сопротивление, природа которого заключается в движении вихрей Абрикосова, а также в изменении фазы волны сверхпроводящих электронных пар (эффект квантового проскальзывания фазы) в ходе переноса сверхпроводящего тока, что приводит к повышению энергопотребления.

Сущность заявляемого способа поясняется примером реализации и графическими материалами. На фиг. 1 представлена принципиальная схема установки для измерения величины критического тока. На фиг. 2 вольт-амперная характеристика нанопроводника без встроенного резистивного элемента.

В общем случае эксперименты по определению величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно проводились с помощью установки, представленной на фиг. 1 следующим образом.

Исследуемый нанопроводник 1 помещается в жидкий гелий (температура 4.2 К) или в другое устройство, позволяющее достичь рабочей температуры, ниже температуры сверхпроводящего перехода материала нанопроводника.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения напряжения на нанопроводнике. В момент возникновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод медленно уменьшается до момента исчезновения напряжения на нанопроводнике. В момент исчезновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току обратного перехода нанопровода из нормального состояния в сверхпроводящее.

Таким образом измеряются прямой и обратный ток нанопроводника.

В качестве примера рассмотрим определение величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно в нанопроводе из нитрида ниобия (NbN). Нанопроводник из нитрида ниобия длиной 1000 нм, шириной 200 нм и толщиной 4 нм изготавливается методами электронной литографии и плазмохимического травления на диэлектрической подложке из сапфира. Для подключения нанопроводника к схеме электрических измерений, к его концам методом взрывной фотолитографии формируются макроскопические металлические контакты из платины толщиной 20 нм с подслоем титана толщиной 10 нм. Нанопроводник на подложке помещается в жидкий гелий (температура 4.2 К) или в другое устройство, способное обеспечить достижение рабочей температуры 4.2 К, например, криогенную машину замкнутого цикла.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения напряжения на нанопроводнике. В момент возникновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод медленно уменьшается до момента исчезновения напряжения на нанопроводнике. В момент исчезновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току обратного перехода нанопровода из нормального состояния в сверхпроводящее.

По результатам вышеописанных измерений напряжения на нанопроводе в зависимости от величины тока через него строится вольт-амперная характеристика нанопроводника, показанная на фиг. 2. Прямой ток нанопроводника I1 определяется в момент появления напряжения на нанопроводнике при увеличении тока, а обратный ток I2 определяется в момент исчезновения напряжения на нанопроводнике при уменьшении тока. Соответственно, графически определялась величина гистерезиса.

По описанной выше методике проводились измерения величины гистерезиса в зависимости от температуры для различных материалов. Результаты измерений приведены в таблице, в которой в качестве меры гистерезиса указано отношение токов прямого и обратного перехода I1/I2 (чем ближе это отношение к 1, тем меньше величина гистерезиса, а при значении 1 гистерезис отсутствует, поскольку токи прямого и обратного переходов равны).

Из представленных в таблице результатов видно, что при поддержании температуры нанопроводов в пределах (0.85…0.9)⋅Tc величина гистерезиса минимальна, что обеспечивает оптимальные условия по току для устойчивой работы устройств, поскольку переключение из сверхпроводящего состояния в нормальное (ток I1) не требует превышения тока по сравнению с током обратного переключения из нормального состояния в сверхпроводящее (ток I2), а также уменьшение энергопотребления устройства, поскольку при приближении рабочей температуры устройства к температуре сверхпроводящего перехода Тс, наблюдается уменьшение величины как тока I1, так и тока I2, что уменьшает энергопотребление тогда, когда переключаемый участок нанопровода находится в нормальном состоянии, поскольку энергопотребление пропорционально квадрату величины тока, протекающего через элемент в нормальном состоянии.

Неоспоримое преимущество заявленного способа снижения энергопотребления за счет увеличения температуры системы в сравнении с известным ранее способом уменьшения критического тока перехода за счет внедрения в сверхпроводник участка нормального металла, заключается в том, что, пока нанопровод находится в сверхпроводящем состоянии, он не выделяет тепловой мощности и его энергопотребления равно нулю, в отличие от случая интеграции в сверхпроводящий провод участка нормального металла, на котором тепловая мощность выделяется всегда. Кроме того, увеличение температуры системы и ее приближение к Тс приводит к сильному уменьшению как прямого, так и обратного критических токов, что позволяет существенно уменьшить энергопотребление системы за счет снижения рабочего тока, поскольку энергопотребление определяется его квадратом.

Похожие патенты RU2794493C1

название год авторы номер документа
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное 2018
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Домантовский Александр Григорьевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2694799C1
Сверхпроводниковый дискретный счетный компонент 2019
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2702402C1
Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока 2018
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Домантовский Александр Григорьевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2694800C1
НАНОРАЗМЕРНЫЙ ЛОГИЧЕСКИЙ ИНВЕРТОР ДЛЯ ЦИФРОВЫХ УСТРОЙСТВ 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2744161C1
НАНОРАЗМЕРНЫЙ ЭЛЕМЕНТ ЦИФРОВОЙ ЛОГИКИ 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2744160C1
НАНОРАЗМЕРНОЕ ЛОГИЧЕСКОЕ УСТРОЙСТВО 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2743510C1
НАНОРАЗМЕРНЫЙ ГЕНЕРАТОР ИМПУЛЬСОВ 2020
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2753276C1
Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное 2018
  • Гурович Борис Аронович
  • Приходько Кирилл Евгеньевич
  • Домантовский Александр Григорьевич
  • Столяров Владимир Леонидович
  • Комаров Дмитрий Анатольевич
  • Кулешова Евгения Анатольевна
  • Кутузов Леонид Вячеславович
RU2674063C1
СВЕРХБЫСТРЫЙ И СВЕРХЧУВСТВИТЕЛЬНЫЙ ГИБРИДНЫЙ СВЕРХПРОВОДНИКОВЫЙ НАНОВОЛНОВОДНЫЙ ОДНОФОТОННЫЙ ДЕТЕКТОР С НИЗКОЙ СКОРОСТЬЮ ТЕМНОВОГО СЧЁТА 2015
  • Ковалюк Вадим Викторович
  • Ожегов Роман Викторович
  • Елезов Михаил Сергеевич
  • Третьяков Иван Васильевич
  • Ан Павел Павлович
  • Зубкова Евгения Витальевна
  • Гольцман Григорий Наумович
RU2641621C2
Сверхпроводящий источник термодинамического шума 2021
  • Шитов Сергей Витальевич
  • Ким Татьяна Михайловна
RU2757756C1

Иллюстрации к изобретению RU 2 794 493 C1

Реферат патента 2023 года Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно предусматривает определение критической температуры перехода материала нанопровода в сверхпроводящее состояние Тс и поддержание рабочей температуры нанопровода в пределах (0.85…0.9)⋅Тс. Технический результат - снижение энергопотребления и тепловыделения в электронных функциональных наноразмерных устройствах с высокой плотностью элементов. 1 табл., 2 ил.

Формула изобретения RU 2 794 493 C1

Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно, характеризуемый тем, что производят определение критической температуры перехода материала нанопровода в сверхпроводящее состояние Тс и поддерживают рабочую температуру нанопровода в пределах (0.85…0.9)⋅Тс.

Документы, цитированные в отчете о поиске Патент 2023 года RU2794493C1

JP 2019149344 A, 05.09.2019
СВЕРХПРОВОДЯЩИЙ ПРОВОД 2006
  • Коденкандат Томас
  • Чжан Вэй
  • Хуан Ибин
  • Ли Сяопин
  • Сигал Эдвард Дж.
  • Рупич Мартин В.
RU2414769C2
СПОСОБ УМЕНЬШЕНИЯ ВОЗДЕЙСТВИЯ ГИСТЕРЕЗИСА НА РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ 1998
  • Касаткин С.И.
  • Муравьев А.М.
RU2152046C1
US 2021240080 A1, 05.08.2021.

RU 2 794 493 C1

Авторы

Гурович Борис Аронович

Приходько Кирилл Евгеньевич

Кулешова Евгения Анатольевна

Кутузов Леонид Вячеславович

Даты

2023-04-19Публикация

2022-02-14Подача