Изобретение относится к нефтегазовой отрасли, конкретно к области измерения дебетов выходящего потока нефтедобывающей скважины по газу и по жидкости, и может быть использовано как непосредственно при проектировании узлов учета газожидкостного потока в измерительных установках, так и в любых других технологических установках, имеющих функционал раздельного параллельного одновременного учета параметров фаз входящего продуктового потока.
Известен способ определения дебита продукции скважин [RU 2355883, МПК Е21В 47/10, опубл. 20.05.2009], включающий накапливание жидкости в измерительной емкости при открытой линии отвода газа и закрытой линии отвода жидкости, перекрытие линии отвода газа и увеличение давления в емкости, открытие линии отвода жидкости и газа с замером расхода жидкости и времени определения дебита. Согласно изобретению при закрытой линии отвода жидкости и перекрытой линии отвода газа определяют прирост давления и фиксируют время работы емкости с перекрытой линией отвода газа. При этом объем газа, поступившего из скважины вместе с жидкостью, определяют по разнице произведений прироста давления на свободный от жидкости объем емкости и конечного давления на объем жидкости, поступившей в емкость за время работы с перекрытыми линиями отвода жидкости и газа.
Недостатком способа является его дискретность, т.е. тот факт, что процессы отвода как по газовой, так и по жидкостной линии прерываются с целью увеличить давление одной фазы на другую внутри сепаратора, необходимое для протекания вышеупомянутых процессов. Последовательность - а не непрерывность - измерений значительно замедляет работу измерительной установки.
Известен также способ измерений дебитов, контроля и управления технологией добычи продукции нефтяных скважин [RU 2365750, МПК Е21В 47/10, опубл. 27.08.2009], включающий периодическую подачу продукции в виде газожидкостной смеси в измерительную емкость-сепаратор, сепарацию газожидкостной смеси по газу, отсчет времени достижения газожидкостной смесью измерительных уровней сепаратора и измерение массы газожидкостной смеси на измерительных уровнях после образования выраженной границы раздела фаз, при этом непрерывное измерение массы газожидкостной смеси осуществляют в процессе налива и в период отстоя и сепарации, а измерение температуры, давления, дебита газа, массы, уровня, раздела фаз и объема жидкости в процессе налива осуществляют за определенные интервалы времени.
Недостатками способа являются, во-первых, также дискретность измерений, проявляющаяся в том, что замеры ведутся порционно, друг за другом, а не непрерывно, во-вторых - целевая всеобъемлемость концепции способа, проявляющаяся в наделении его функционалом, требующим постоянного присутствия на установке обслуживающего персонала, дополнительных проверок и поверок всего оборудования установки перед ее запуском. Оба недостатка оказывают негативный экономический эффект на, в первую очередь, факторе времени, необходимом для полного проведения процесса сепарации и измерения фаз входящего потока газожидкостной смеси.
Технический результат, на достижение которого направлено заявляемое изобретение, заключается в получении возможности спроектировать на его основе такой узел учета фаз ГЖС, конструкция которого исключает возникновение всех вышеперечисленных недостатков, т.е. направлено на ускорение протекания процесса учета продукта, за счет создания узла учета фаз ГЖС, работающего в недискретном режиме, при котором отведение и подсчет обоих фаз ведется непрерывно.
Заявленный технический результат достигается за счет того, что способ непрерывного учета количества фаз газожидкостной смеси (ГЖС), включает установку емкости, куда поступает для измерения ГЖС, емкости, куда ГЖС поступает после измерения количества ее фазовых компонентов, установку на линиях отвода газа и жидкости двух расходомеров Кориолиса, предназначенных для измерения количества каждой отводимой фазы, установку на линиях отвода фаз двух аналоговых устройств трубозапорной арматуры, имеющих степень открытия от 1 до 100%, установку на корпусе емкости двух датчиков - датчика гидростатического давления слоя жидкости на дно первой емкости и датчика дифференциального давления, установку программируемого контроллера в виде закрытого шкафа. При этом с помощью датчика дифференциального давления измеряют разности величин давлений газовой фазы на стенки указанных емкостей, при помощи передаточных устройств образуют контур регулирования, включающий аналоговые устройства трубозапорной арматуры, указанные два датчика давления и контроллер. При помощи контура регулирования поддерживают значения указанных датчиках давления на уровне, задающим через контроллер оптимальную скорость отвода фаз, не опускаемую в неаварийном режиме до нуля, путем регулирования с помощью контроллера степени открытия аналоговых устройств трубозапорной арматуры.
Критерий патентоспособности изобретения, относящийся к его новизне, раскрывается в том, что из уровня техники до сих пор не был известен способ недискретного учета фаз, реализуемый посредством установки на линиях отвода фаз аналоговых кранов, управляемых программируемым контроллером.
Критерий патентоспособности изобретения, относящийся к его изобретательскому уровню, раскрывается в том, что для специалиста описанный способ, включающий создание контура регулирования, изначально имеющего целью своей работы поддержание значений датчиков давлений на определенном (постоянном, не являющимся интервальным) уровне, задающим через контроллер оптимальную скорость отвода фаз, не опускаемую в неаварийном режиме до нуля, не является очевидным и не следует явным образом из уровня техники.
Критерий патентоспособности изобретения, относящийся к его промышленной применимости, раскрывается в том, что заявляемый способ реализуется посредством уникальной комбинации уже известных из уровня техники и применяемых на производстве устройств и прочих технологических компонентов.
Сопроводительный чертеж поясняет и дополнительно раскрывает суть заявляемого изобретения.
Способ предполагает наличие емкости 1, куда поступает для измерения газожидкостная смесь ГЖС, емкости 2, куда ГЖС поступает после измерения количества ее фазовых компонентов, установку на линиях отвода газа и жидкости двух расходомеров Кориолиса 3 и 4, предназначенных для измерения количества каждой отводимой фазы, установку на линиях отвода фаз (после расходомеров) двух аналоговых устройств трубозапорной арматуры 5 и 6, имеющих степень открытия от 1 до 100%, установку на корпусе емкости 1 двух датчиков 7 и 8 (датчика гидростатического давления слоя жидкости на дно емкости 1, обозначенного ДГ, и датчика дифференциального давления, обозначенного ДД), установку (в виде закрытого шкафа) программируемого контроллера 9. Способ также предполагает образование при помощи передаточных устройств контура регулирования, включающего краны 5 и 6, датчики 7 и 8, контроллер 9.
Изобретение работает следующим образом.
Газожидкостная смесь (ГЖС) поступает в емкость 1. Из емкости 1 обе фазы ГЖС отводятся в емкость 2, при этом газ отводится по линии, показанной на рисунке сверху, жидкость соответственно отводится по нижней линии. Подсчет количества фаз (их массового расхода) производится при помощи расходомеров Кориолиса 3 и 4 (спроектированных для газовой и жидкой фаз соответственно), установленных на линиях отвода. Регулирование скорости отвода фаз производится при помощи аналоговых кранов 5 и 6 (являющихся аналоговыми устройствами трубозапорной арматуры, имеющими степень открытия от 1 до 100%), степень открытия которых регулируется автоматически, при помощи небольших встроенных электроприводов, получающих по передаточным устройствам электрический сигнал от контроллера 9. Контроллер 9 в непрерывном режиме регулирует степень открытия кранов 5 и 6 и также получает по передаточным устройствам от датчиков 7 и 8 электрические сигналы с информацией о следующих показаниях: от датчика 7 - о величине давления слоя жидкости на дно емкости 1, от датчика 8 - о разности величин давлений газовой фазы на стенки емкостей 1 и 2. Элементы 5, 6, 7, 8 и 9 образуют контур регулирования, управляемый контроллером 9, в котором устройства 7 и 8 являются информирующими, 5 и 6 - управляемыми.
Таким образом, заявляемый способ посредством создания контура регулирования из двух особых управляемых, двух информирующих и одного управляющего устройства предлагает возможность исключения главного эксплуатационного недостатка приведенных выше аналогов, связанных с использованием трубозапорной арматуры заслоночного типа, степень перекрытия потока внутри которых может быть равна либо 0, либо 100%.
название | год | авторы | номер документа |
---|---|---|---|
Установка для измерения дебита продукции газоконденсатных скважин | 2017 |
|
RU2655866C1 |
ПЕРЕНОСНОЙ УЗЕЛ УЧЕТА ДОБЫВАЕМОЙ СКВАЖИННОЙ ЖИДКОСТИ | 2014 |
|
RU2552563C1 |
МОБИЛЬНЫЙ ЭТАЛОН 2-ГО РАЗРЯДА ДЛЯ ПОВЕРКИ УСТАНОВОК ИЗМЕРЕНИЯ СКВАЖИННОЙ ПРОДУКЦИИ | 2020 |
|
RU2749256C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА НЕФТЯНОЙ СКВАЖИНЫ ПО ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2277635C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЙ ДЕБИТА ПРОДУКЦИИ НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИН | 2014 |
|
RU2565614C2 |
УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ДЕБИТОВ ПРОДУКЦИИ ГАЗОКОНДЕНСАТНЫХ И НЕФТЯНЫХ СКВАЖИН И СПОСОБ ЕЁ РАБОТЫ | 2022 |
|
RU2799684C1 |
Способ повышения надёжности результатов циклического определения обводнённости добываемой нефти | 2021 |
|
RU2795509C2 |
СИСТЕМА ИЗМЕРЕНИЯ СОДЕРЖАНИЯ КАПЕЛЬНОЙ ЖИДКОСТИ В ПОТОКЕ ПОПУТНОГО НЕФТЯНОГО ГАЗА | 2020 |
|
RU2750790C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГАЗОКОНДЕНСАТНОГО ФАКТОРА | 2014 |
|
RU2556293C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ДЕБИТОВ ПРОДУКЦИИ ГАЗОКОНДЕНСАТНЫХ И НЕФТЯНЫХ СКВАЖИН | 2013 |
|
RU2532490C1 |
Изобретение относится к нефтегазовой отрасли, конкретно к области измерения дебитов выходящего потока нефтедобывающей скважины по газу и по жидкости, и может быть использовано как непосредственно при проектировании узлов учета газожидкостного потока в измерительных установках, так и в любых других технологических установках, имеющих функционал раздельного параллельного одновременного учета параметров фаз входящего продуктового потока. Способ включает установку емкости, куда поступает для измерения газожидкостной смеси (ГЖС), емкости, куда ГЖС поступает после измерения количества ее фазовых компонентов, установку на линиях отвода газа и жидкости двух расходомеров Кориолиса, предназначенных для измерения количества каждой отводимой фазы, установку на линиях отвода фаз двух аналоговых устройств трубозапорной арматуры, имеющих степень открытия от 1 до 100%. Установку на корпусе емкости двух датчиков - датчика гидростатического давления слоя жидкости на дно первой емкости и датчика дифференциального давления, установку программируемого контроллера. При этом с помощью датчика дифференциального давления измеряют разности величин давлений газовой фазы на стенки указанных емкостей. При помощи передаточных устройств образуют контур регулирования, включающий аналоговые устройства трубозапорной арматуры, указанные два датчика давления и контроллер. При помощи контура регулирования поддерживают значения указанных датчиков давления на уровне, задающем через контроллер оптимальную скорость отвода фаз, не опускаемую в неаварийном режиме до нуля, путем регулирования с помощью контроллера степени открытия аналоговых устройств трубозапорной арматуры. Технический результат заключается в ускорении измерения фаз ГЖС, за счет возможности отведения и подсчета обеих фаз в непрерывном режиме. 1 ил.
Способ непрерывного учета количества фаз газожидкостной смеси (ГЖС), включающий установку емкости, куда поступает для измерения ГЖС, емкости, куда ГЖС поступает после измерения количества ее фазовых компонентов, установку на линиях отвода газа и жидкости двух расходомеров Кориолиса, предназначенных для измерения количества каждой отводимой фазы, установку на линиях отвода фаз двух аналоговых устройств трубозапорной арматуры, имеющих степень открытия от 1 до 100%, установку на корпусе емкости двух датчиков - датчика гидростатического давления слоя жидкости на дно первой емкости и датчика дифференциального давления, установку программируемого контроллера в виде закрытого шкафа, отличающийся тем, что с помощью датчика дифференциального давления измеряют разности величин давлений газовой фазы на стенки указанных емкостей, при помощи передаточных устройств образуют контур регулирования, включающий аналоговые устройства трубозапорной арматуры, указанные два датчика давления и контроллер, при этом при помощи контура регулирования поддерживают значения указанных датчиков давления на уровне, задающем через контроллер оптимальную скорость отвода фаз, не опускаемую в неаварийном режиме до нуля, путем регулирования с помощью контроллера степени открытия аналоговых устройств трубозапорной арматуры.
СИСТЕМА И СПОСОБ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА | 2000 |
|
RU2270981C2 |
УСТРОЙСТВО (ВАРИАНТЫ) И СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОГО РАСХОДА НА ОСНОВАНИИ ОБУСЛОВЛЕННОГО СИЛОЙ КОРИОЛИСА СДВИГА ФАЗ | 1999 |
|
RU2263284C2 |
СПОСОБ ИЗМЕРЕНИЙ ДЕБИТОВ, КОНТРОЛЯ И УПРАВЛЕНИЯ ТЕХНОЛОГИЕЙ ДОБЫЧИ ПРОДУКЦИИ НЕФТЯНЫХ СКВАЖИН И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2365750C1 |
СПОСОБ ИЗМЕРЕНИЯ ПРОДУКЦИИ НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИН | 2014 |
|
RU2578065C2 |
Способ и установка для измерения дебита нефтяной скважины | 2020 |
|
RU2751054C1 |
US 4852395 A1, 01.08.1989 | |||
WO 1997024615 A1, 10.07.1997. |
Авторы
Даты
2023-05-02—Публикация
2020-10-17—Подача