Изобретение относится к производству стеклокремнезита на основе техногенных отходов промышленности, используемого в строительстве.
Известен ряд способов получения стеклокремнезита на основе техногенных отходов промышленности, недостатками которых являются высокая энергоемкость технологического процесса и относительно низкое качество конечного продукта.
Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения стеклокремнезита на основе отходов горнодобывающей промышленности, Патент РФ №2580855, включающий рассев отходов горнодобывающей промышленности до 0,5-2,5 мм, а тарных стекол - до 2,0-5,0 мм, смешение, укладку в формы нижнего слоя стеклосодержащего материала нижнего слоя используют смесь отходов горнодобывающей промышленности с жидким стеклом при массовом соотношении 3:1 соответственно, помол, укладку в формы верхнего слоя смесь гранул тарного стекла с жидким стеклом при массовом соотношении 10:1 соответственно, спекание при 795°С, отжиг, обрезку и контроль качества.
Недостатком данного способа является высокая энергоемкость и низкое качество конечного продукта.
Технический результат предлагаемого изобретения заключается в повышении качества конечного продукта и снижении энергозатрат за счет спекания при более низкой температуре.
Технический результат достигается тем, что способ получения стеклокремнезита включает рассев отходов, их смешение, укладку в формы в виде материала нижнего слоя, помол, укладку стеклосодержащего материала верхнего слоя, спекание, отжиг, обрезку и контроль качества, причем материал нижнего слоя состоит из смеси тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов Курской магнитной аномалии (КМА) и колеманита при массовом соотношении 1:1:0,5 соответственно, а в стеклосодержащий материал верхнего слоя дополнительно вводят колеманит при соотношении колеманита и гранулы тарного стекла 1:10 соответственно.
Предложенный способ отличается от прототипа тем, что материал нижнего слоя состоит из смеси тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов Курской магнитной аномалии (КМА) и колеманита при массовом соотношении 1:1:0,5 соответственно, а в стеклосодержащий материал верхнего слоя дополнительно вводят колеманит при соотношении колеманита и гранулы тарного стекла 1:10 соответственно.
В предлагаемом способе при оптимальном соотношении тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов КМА и колеманита по сравнению с прототипом существенно снижается температура спекания за счет образования при 500ºС кальций-боратного стекла при дегидратации колеманита, что позволяет спекать стеклокремнезит при 690ºС. В процессе спекания оксиды железа и кремния, содержащиеся в кристаллических сланцах и отходах обогащения железистых кварцитов КМА образуют при спекании гиперстен состава FeSiO3. Гиперстен обладает высокими прочностными характеристиками и существенно упрочняет структуру стеклокремнезита, что повышает качество конечного продукта, в частности прочность при сжатии.
Проведенный сопоставительный анализ технологических операций и свойств предлагаемого и известного способов в таблице 1.
Оптимальное соотношение тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов КМА и колеманита определяли с учетом температуры спекания и прочности стеклокремнезита на сжатие (таблица 2).
Таблица 2
Оптимальное соотношение компонентов нижнего и верхнего слоев
При содержании колеманита в составе нижнего слоя менее 0,5 массовых частей существенно возрастает оптимальная температура обжига на 50-80ºС. При содержании колеманита в составе нижнего слоя более 0,5 массовых частей, увеличивается содержание стеклофазы на 10-15%, что снижает морозостойкость на 25%.
Сопоставительный анализ технологических операций и показателей качества предлагаемого и известного способов показал, что в предлагаемом способе при оптимальном соотношении кристаллических сланцев, отходов обогащения железистых кварцитов КМА и колеманита при массовом соотношении 1:1:0,5 снижается температура спекания до 690ºС, а прочность стеклокремнезита и морозостойкость возрастают соответственно до 98 МПа и 100 циклов замораживания – оттаивания.
Проведенный анализ известных способов получения стеклокремнезита позволяет сделать вывод о соответствии заявляемого изобретения критерию «новизна».
Пример.
В качестве техногенных отходов промышленности применялись: колеманит, масс. %: B2O3 – 36,5;CaO – 23,5; SiO2 – 5,7; MgO – 2,6; Al2O3 – 0,35; Na2O – 0,3; Fe2O3 – 0,05; п.п.п. – 31,0 (Бессмертный В. С., Бондаренко М. А., Здоренко Н. М., Платов Ю.Т., Платова Р. А., Изотова И. А. композиционный стеклокристаллический материал на основе стеклобоя и колеманита // Материаловедение. №4. 2022. С. 27-34), кристаллические сланцы следующего химического состава (мас. %): SiO2 – 52,92; Al2O3 – 9,02; TiO2 – 1,48; FeO – 5,01; Fe2O3 – 4,99; CaO – 6,08; MgO – 2,72; Na2O – 0,28; K2O – 2,50; П.П.П. – 15,00 (Патент РФ №2578233); отходы обогащения железистых кварцитов КМА известного химического состава (масс. %): Fe общ. =11,34; FeO =7,90; SiO2 = 65,02; Al2O3 =2,21; CaO = 2,70; MgO =4,97; S = 0,192; P = 0,148; K2O = 0,60; Na2O = 0,90; CO2 =3,54; TiO2= 0,245; П.П.П.=5,20. (Бессмертный В.С., Здоренко Н.М., Макаров А.В., Бондаренко М.А., Кочурин Д.В., Воронцов В.М., Черкасов А.В. Плазменная технология получения стекломикрошариков на основе отходов обогащения железистых кварцитов КМА // Стекло и керамика. 2021. №7. С. 17-27).
Тонкоизмельченные кристаллические сланцы смешивали с отходами обогащения железистых кварцитов КМА и колеманитом и укладывали в формы. В качестве стеклосодержащего компонента использовали бой зеленого тарного стекла (масс. %): SiO2 – 69,7; Al2O3 – 3,4; CaO – 6,01; MgO – 3,93; Na2O – 14,59; SO3 – 0,37; Fe2O3 – 0.46.
После рассева на ситах гранулирование стекло смешивали в лопастном смесителе с колеманитом при соотношении 10:1 соответственно. Смесь укладывали в формы на предварительно уложенный нижний слой. Верхний слой составлял 10% объема нижнего слоя. Спекание производили в муфельной при 690ºС. Затем производили отжиг, обрезку кромок и контроль качества готовых изделий.
Пример контроля качества продукции.
Для определения прочности на сжатие из блоков стеклокремнезита вырезали кубики алмазным кругом размером 30х30х30 мм. Перед установкой на лабораторный пресс нижнюю и верхнюю грани кубиков обкладывали паронитовыми прокладками. Разрушение образцов происходило после нагружения пресса. Прочность на сжатие определяли как среднее арифметическое пяти измерений:
Морозостойкость определяли по ГОСТ 7025-91 в морозильной камере с принудительной вентиляцией с автоматическим регулированием температуры от -15ºС до -20ºС при объемном замораживании – 4 часа. Контроль морозостойкости осуществляли по степени повреждений и потере массы.
Морозостойкость стеклокремнезита определяли как среднее арифметическое пяти измерений:
Изобретение относится к производству стеклокремнезита. Технический результат изобретения заключается в устранении ряда технологических операций, при этом спекание осуществляют при более низкой температуре.
Способ получения стеклокремнезита включает рассев, смешение, укладку в формы нижнего слоя, в качестве которого используют смесь тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов КМА и колеманита при массовом соотношении 1:1:0,5 соответственно. Проводят помол, укладку в формы верхнего слоя, в качестве которого используют смесь гранул цветного тарного стекла с колеманитом при массовом соотношении 10:1. Затем осуществляется спекание, отжиг, обрезку и контроль качества.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ КРИСТАЛЛИЧЕСКИХ СЛАНЦЕВ | 2022 |
|
RU2794012C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА | 2022 |
|
RU2788232C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ТЕХНОГЕННЫХ ОТХОДОВ ПРОМЫШЛЕННОСТИ | 2022 |
|
RU2797581C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ТЕХНОГЕННЫХ ОТХОДОВ ПРОМЫШЛЕННОСТИ | 2022 |
|
RU2789529C1 |
СОСТАВ ШИХТЫ ДЛЯ ПРОИЗВОДСТВА СТЕКЛОКРЕМНЕЗИТА | 2022 |
|
RU2788196C1 |
СТЕКЛОКРЕМНЕЗИТ НА ОСНОВЕ ТЕХНОГЕННЫХ ОТХОДОВ ПРОМЫШЛЕННОСТИ | 2022 |
|
RU2789530C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ТЕХНОГЕННЫХ ОТХОДОВ ПРОМЫШЛЕННОСТИ | 2022 |
|
RU2787669C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ОТХОДОВ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ | 2015 |
|
RU2580855C1 |
ШИХТА ДЛЯ СИНТЕЗА МАРБЛИТА ЧЁРНОГО ЦВЕТА | 2022 |
|
RU2797302C1 |
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ДЕКОРАТИВНО-ОБЛИЦОВОЧНЫХ МАТЕРИАЛОВ | 2022 |
|
RU2797204C1 |
Изобретение относится к производству стеклокремнезита, используемого в строительстве. Технический результат достигается тем, что способ получения стеклокремнезита включает рассев отходов, их смешение, укладку в формы в виде нижнего слоя, помол, укладку стеклосодержащего материала в формы в виде верхнего слоя, спекание, отжиг, обрезку и контроль качества. Материал нижнего слоя состоит из смеси тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов Курской магнитной аномалии (КМА) и колеманита при массовом соотношении 1:1:0,5 соответственно, а в стеклосодержащий материал верхнего слоя дополнительно вводят колеманит при соотношении колеманита и гранул тарного стекла 1:10. Технический результат предлагаемого изобретения заключается в повышении прочности и морозостойкости конечного продукта и снижении энергозатрат за счет спекания при более низкой температуре. 2 табл., 1 пр.
Способ получения стеклокремнезита, включающий рассев отходов, их смешение, укладку в формы в виде материала нижнего слоя, помол, укладку стеклосодержащего материала верхнего слоя, спекание, отжиг, обрезку и контроль качества, отличающийся тем, что материал нижнего слоя состоит из смеси тонкодисперсных кристаллических сланцев, отходов обогащения железистых кварцитов Курской магнитной аномалии (КМА) и колеманита при массовом соотношении 1:1:0,5 соответственно, а в стеклосодержащий материал верхнего слоя дополнительно вводят колеманит при соотношении колеманита и гранулы тарного стекла 1:10 соответственно.
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ОТХОДОВ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ | 2015 |
|
RU2580855C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА | 2016 |
|
RU2630333C1 |
CN 108774002 A, 09.11.2018 | |||
РЕВЕРСИВНЫЙ ИНВЕРТИРУЮЩИЙ РЕГИСТР.ВОГООЮЗНАЯ^^^^•^•Ш1штт^''Б лис ТЕТКА | 0 |
|
SU332578A1 |
JP 2002308646 A, 23.10.2002. |
Авторы
Даты
2023-05-31—Публикация
2022-09-14—Подача