Изобретение относится к электротехнике и может быть использовано для защиты электрических цепей от сверхкоротких импульсов (СКИ).
Микрополосковые линии массово используются для передачи электрических сигналов и питания различным элементам электрических цепей. Поэтому они непрерывно модифицируются для совершенствования их возможностей [Maloratsky L. Using Modified Microstrip Lines to Improve Circuit Performance// High Frequency Electronics. - March 2011.-P. 36-52].
Наиболее близкой к предлагаемому изобретению является двухотрезковая микрополосковая линия с заземленным проводником сверху, защищающая от CКИ [Патент на изобретение №2784034. Двухотрезковая микрополосковая линия с заземленным проводником сверху, защищающая от сверхкоротких импульсов / Газизов Т.Р., Сагиева И., Секенова А. - Заявка № 2022110949; заявлен 22.04.2022; опубликован 23.11.2022], состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и заземлённого проводника сверху, соединенного на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды, отличающаяся тем, что верхний заземленный проводник соединен с опорным проводником в точке, делящей линию на два отрезка так, что второй отрезок в два раза длиннее первого.
Недостатком устройства-прототипа является малое ослабление амплитуды СКИ: 4 раза (по отношению к половине воздействующей электродвижущей силы).
Предлагается микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и заземлённого проводника сверху, соединенного на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды, отличающаяся тем, что верхний заземленный проводник соединен с опорным проводником в точках, делящих линию на три отрезка так, что второй отрезок в два раза длиннее первого, а третий отрезок в четыре раза длиннее первого.
Техническим результатом является увеличенное (в 2 раза по сравнению с прототипом) ослабление СКИ.
Технический результат достигается за счет деления импульса на 2 импульса не менее чем в 2 раза меньшей амплитуды в первом отрезке, деления каждого из этих импульсов на 2 импульса не менее чем в 2 раза меньшей амплитуды во втором отрезке и такого же - в третьем.
Существенный признак по выбору параметров линии устанавливает такое соотношение между параметрами линии, которое обеспечивает разложение СКИ на импульсы равной амплитуды. Это соотношение существует, и при заданных некоторых параметрах, согласно ему, можно определить оставшиеся. Между тем оно выражается не простыми аналитическими формулами, а сложными алгоритмическими математическими моделями, и поэтому требует пояснения.
Для обеспечения разложения СКИ можно использовать любые параметры линии. При этом можно, прежде всего, руководствоваться тем известным фактом из теории многопроводных линий передачи, в частности из модального анализа, например из монографии [Заболоцкий А.М., Газизов Т.Р. Модальные фильтры для защиты бортовой радиоэлектронной аппаратуры космического аппарата. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2013.- 151 с.], что к такому разложению может привести неравенство погонных задержек мод связанной линии, когда произведение их разности на длину линии больше длительности СКИ. Таким образом, увеличивая длину линии, можно разложить заданный СКИ при заданной разности погонных задержек. Последняя определяется геометрическими и электрофизическими параметрами поперечного сечения. Увеличивать её можно, обеспечивая распространение самой быстрой моды, как можно более, в диэлектрике с наименьшей проницаемостью, а медленной - наибольшей. Например, это можно получить, приближая верхний проводник к сигнальному, сужая, утолщая их или отдаляя от опорного, а также, например, увеличивая относительную диэлектрическую проницаемость между сигнальным и опорным проводниками. Должно отметить, что изменение этих параметров также влияет на амплитуды напряжений (и возможность их выравнивания) импульсов разложения, хотя и в ещё более сложной форме: через амплитуды напряжений в отдельных проводниках и коэффициенты отражения в начале и конце линии, для каждой моды.
Поясним указанные качественные рассуждения конкретным вычислительным инструментарием, позволяющим получить точные количественные значения параметров, обеспечивающие технический результат. Из конкретных значений параметров вычисляются матрицы погонных коэффициентов электростатической (C) и электромагнитной (L) индукции. В общем случае, это делается численными методами, например методом моментов, формулы для которого, с их детальным выводом, представлены в подразделе 2.3 (в части двумерной задачи) монографии [Газизов Т.Р. Уменьшение искажений электрических сигналов в межсоединениях / Под ред. Н.Д. Малютина.-Томск: Изд-во НТЛ, 2003.- 212 с.] для многопроводных линий с произвольным поперечным сечением. Далее всё определяется произведением матриц L и C и его собственными значениями и векторами. Так, корень квадратный из собственных значений матрицы LC дает погонные задержки мод, а из собственных векторов для напряжения и токов вычисляется матрица характеристических импедансов Z, собственные значения которой дают волновые сопротивления мод, определяющие, вместе с заданными граничными условиями (сопротивлениями источника и нагрузки), коэффициенты отражения мод, а значит, амплитуды напряжений импульсов разложения. Указанное широко известно из теории многопроводных линий передачи, а краткое описание этого с формулами приведено, например в пункте 1.2.1 монографии [Заболоцкий А.М., Газизов Т.Р. Временной отклик многопроводных линий передачи. Томск: Томский государственный университет, 2007. 152 с.], в которой также детально описано вычисление временного отклика на воздействие импульса. Алгоритмические математические модели для выполнения указанных вычислений реализованы в системе компьютерного моделирования TALGAT [www.talgat.org]. Таким образом, выбор параметров линии, обеспечивающий существенный признак, указанный в формуле изобретения, представляется вполне определенным.
Достижимость технического результата показана на примере моделирования структуры, поперечное сечение которой приведено на фиг. 1, схема электрическая принципиальная - на фиг. 2 (дополнительное соединение верхнего проводника с опорным в двух точках, кроме концов, моделируется двумя отрезками), а воздействующий СКИ - на фиг. 3. Параметры поперечного сечения t=18 мкм, w=0,9 мм, w1=1 мм, h=1 мм, h1=0,2 мм, относительная диэлектрическая проницаемость εr=4,5. Совокупность этих параметров определяет матрицы L и C линии. Другие параметры схемы: общая длина линии l=1 м, внутренние сопротивления источника СКИ и нагрузки R1=R2=50 Ом. У источника СКИ амплитуда электродвижущей силы 5 В, а времена нарастания, плоской вершины и спада по 40 пс. Потери в проводниках и диэлектриках не учитывались.
Вычисленные матрицы L и C:
L= нГн/м; С= пФ/м.
Корень квадратный из собственных значений произведения этих матриц определяет значения погонных задержек мод, распространяющихся в такой линии, как τ1=3,42 нс/м, τ2=5,84 нс/м. На фиг. 4 представлена форма напряжения на выходе прототипа с интервалами между импульсами 0,814 нc и равными амплитудами около 0,6 В.
Заявляемая линия работает следующим образом. В первом отрезке линии СКИ разлагается на 2 импульса с меньшей амплитудой, каждый из которых приходит к концу этого отрезка с задержкой равной погонной задержке соответствующей моды, умноженной на длину отрезка. Каждый из этих импульсов, в свою очередь, разлагается во втором отрезке еще на 2 импульса, каждый из которых приходит к концу второго отрезка с задержкой равной погонной задержке соответствующей моды, умноженной на длину этого отрезка. В третьем отрезке каждый разложенный во втором отрезке импульс разлагается на 2 импульса, каждый из которых приходит к концу третьего отрезка с задержкой равной погонной задержке соответствующей моды, умноженной на длину этого отрезка.
В результате, форма напряжения на выходе линии представляет собой 8 импульсов с интервалами между ними по 0,348 нс и равными амплитудами около 0,3 В. Это подтверждает вычисленная форма напряжения в узле V4, приведенная на фиг. 4. В итоге показана возможность увеличения ослабления в 2 раза (по сравнению с прототипом) воздействующего СКИ, а значит, достижимость технического результата.
Изобретение относится к электротехнике и может быть использовано для защиты электрических цепей от сверхкоротких импульсов. Техническим результатом является увеличенное ослабление СКИ. Для этого предложена микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и заземлённого проводника сверху, соединенного на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды. При этом верхний заземленный проводник соединен с опорным проводником в точках, делящих линию на три отрезка так, что второй отрезок в два раза длиннее первого, а третий отрезок в четыре раза длиннее первого. 4 ил.
Микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и заземлённого проводника сверху, соединенного на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды, отличающаяся тем, что верхний заземленный проводник соединен с опорным проводником в точках, делящих линию на три отрезка так, что второй отрезок в два раза длиннее первого, а третий отрезок в четыре раза длиннее первого.
RU 2784034 C1, 23.11.2022 | |||
МИКРОПОЛОСКОВАЯ ЛИНИЯ С ДВУМЯ СИММЕТРИЧНЫМИ ПРОВОДНИКАМИ СВЕРХУ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2020 |
|
RU2759053C1 |
МИКРОПОЛОСКОВАЯ ЛИНИЯ С ЗАЗЕМЛЕННЫМ ПРОВОДНИКОМ СВЕРХУ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2020 |
|
RU2763692C1 |
US 11374327 B2, 28.06.2022. |
Авторы
Даты
2024-08-13—Публикация
2024-03-01—Подача