Микрополосковые линии массово используются для передачи электрических сигналов и питания различным элементам электрических цепей. Изобретение относится к электротехнике и может быть использовано для защиты электрических цепей от сверхкоротких импульсов (СКИ).
Наиболее близкой к предлагаемому изобретению является микрополосковая линия с двумя боковыми заземленными проводниками, защищающая от сверхкоротких импульсов (СКИ) [Патент на изобретение №2763853.Микрополосковая линия с двумя боковыми заземленными проводниками, защищающая от сверхкоротких импульсов / И. Сагиева, Т.Р. Газизов] состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике и сигнального проводника в виде полоски на подложке, c наличием двух боковых заземленных проводников на подложке, соединенных на концах с опорным проводником, и выбором параметров линии, обеспечивающим разложение СКИ, воздействующего между сигнальным и опорным проводниками, на два импульса равной амплитуды.
Недостатком устройства-прототипа является малое ослабление амплитуды СКИ: 2 раза (по отношению к половине воздействующей электродвижущей силы).
Предлагается микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и двух боковых (расположенных по бокам от полоски) заземленных проводников на подложке, соединенных на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды, отличающаяся тем, что каждый боковой заземленный проводник соединен с опорным проводником в точке, делящей линию на два отрезка так, что второй отрезок в два раза длиннее первого.
Техническим результатом является увеличенное (в 2 раза по сравнению с прототипом) ослабление СКИ. Технический результат достигается за счет деления импульса на 2 импульса не менее чем в 2 раза меньшей амплитуды в первом отрезке и последующего деления каждого из этих импульсов на 2 импульса не менее чем в 2 раза меньшей амплитуды во втором отрезке.
Существенный признак по выбору параметров линии устанавливает такое соотношение между параметрами линии, которое обеспечивает разложение СКИ на импульсы равной амплитуды. Это соотношение существует, и при заданных некоторых параметрах, согласно ему, можно определить оставшиеся. Между тем оно выражается не простыми аналитическими формулами, а сложными алгоритмическими математическими моделями, и поэтому оно требует пояснения.
Для обеспечения разложения СКИ можно использовать любые параметры линии. При этом можно, прежде всего, руководствоваться тем известным фактом из теории многопроводныхлиний передачи, в частности из модального анализа, например из монографии [Заболоцкий А.М., Газизов Т.Р. Модальные фильтры для защиты бортовой радиоэлектронной аппаратуры космического аппарата. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2013 – 151 с.], что к такому разложению может привестинеравенство погонных задержек мод многопроводной линии, когда произведение их разности на длину линии больше длительности СКИ. Таким образом, увеличивая длину линии, можно разложить заданный СКИ при заданной разности погонных задержек. Последняя определяется геометрическими и электрофизическими параметрами поперечного сечения. Увеличивать её можно, обеспечивая распространение самой быстрой моды, как можно более, в диэлектрике с наименьшей проницаемостью, а медленной – наибольшей. Например, это можно получить, приближая боковые проводники к сигнальному, сужая или утолщая их, а также, например, увеличивая относительную диэлектрическую проницаемость между опорным проводником и остальными. Должно отметить, что изменение этих параметров также влияет на амплитуды напряжений (и возможность их выравнивания) импульсов разложения, хотя и в ещё более сложной форме: через амплитуды напряжений в отдельных проводниках и коэффициенты отражения в начале и конце линии, для каждой моды.
Поясним указанные качественные рассуждения конкретным вычислительным инструментарием, позволяющим получить точные количественные значения параметров, обеспечивающие технический результат. Из конкретных значений параметров вычисляются матрицы погонных коэффициентов электростатической (C) и электромагнитной (L) индукции. В общем случае, это делается численными методами, например методом моментов, формулы для которого, с их детальным выводом, представлены в подразделе 2.3 (в части двумерной задачи) монографии [Газизов Т.Р. Уменьшение искажений электрических сигналов в межсоединениях / Под ред. Н.Д. Малютина – Томск: Изд-во НТЛ, 2003.– 212 с.] для многопроводных линий с произвольным поперечным сечением. Далее всё определяется произведением матриц L и C и его собственными значениями и векторами. Так, корень квадратный из собственных значений матрицы LC дает погонные задержки мод, а из собственных векторов для напряжения и токов вычисляется матрица характеристических импедансов Z, собственные значения которой дают волновые сопротивления мод, определяющие, вместе с заданными граничными условиями (сопротивлениями источника и нагрузки), коэффициенты отражения мод, а значит, амплитуды напряжений импульсов разложения. Указанное широко известно изтеории многопроводныхлиний передачи, а краткое описание этого с формулами приведено, например в пункте 1.2.1 монографии [Заболоцкий А.М., Газизов Т.Р. Временной отклик многопроводных линий передачи. Томск: Томский государственный университет, 2007. 152 с.], в которой также детально описано вычисление временного отклика на воздействие импульса. Алгоритмические математические модели для выполнения указанных вычислений реализованы в системе компьютерного моделирования TALGAT [www.talgat.org]. Таким образом, выбор параметров линии, обеспечивающийсущественный признак, указанный в формуле изобретения, представляется вполне определенным.
Достижимость технического результата показана на примере моделирования структуры, поперечное сечение которой приведено на фиг. 1, схема электрическая принципиальная – на фиг. 2(дополнительное соединение каждого из боковых заземлённых проводников c опорным в одной точке, кроме концов, моделируется двумя отрезками), а воздействующий СКИ - на фиг. 3. Параметры поперечного сечения t=105 мкм, w=0,4 мм, w1=0,365 мм, h=0,18 мм,d=1 мм,s=0,9 мм, относительная диэлектрическая проницаемость εr=4,5. Совокупность этих параметров определяет матрицы L и C линии. Другие параметры схемы: длина линии l=1 м, внутренние сопротивления источника СКИ и нагрузки R1=R2=50 Ом. Два симметричных проводника соединены на концах с опорным проводником. У источника СКИ амплитуда электродвижущей силы (ЭДС) 5 В, а времена нарастания, плоской вершины и спада по 30 пс. Потери в проводниках и диэлектриках не учитывались.
Вычисленные матрицы L и C:
L=
Корень квадратный из собственных значений произведения этих матриц определяет значения погонных задержек мод, распространяющихся в такой линии, как τ1=5,796 нс/м τ2=5,889 нс/м, τ3=6,089 нс/м. Однако в силу симметрии двух верхних проводников амплитуда импульса моды 2 равна нулю, и остаются только импульсы мод 1 и 3.
На фиг. 4 представлена форма напряжения на выходе прототипа (– –), интервал между импульсами определяется произведением длины линии (1 м) и разности погонных задержек мод 1 и 3 и составляет 0,29 нc с равными амплитудами 1,2 В.
Заявляемая линия работает следующим образом. В первом отрезке линии СКИ разлагается на два импульса меньшей амплитудой, каждый из которых приходит к концу этого отрезка с задержкой равной погонной задержке соответствующей моды, умноженной на длину отрезка. Каждый из этих импульсов, в свою очередь, разлагается во втором отрезке еще на два импульса,каждый из которых приходит к концу второго отрезка с задержкой равной погонной задержке соответствующей моды, умноженной на длину этого отрезка. В результате, форма напряжения на выходе линии представляет собой 4 импульса с интервалом между ними 0,09 нс и равными амплитудами 0,6 В. Это подтверждает вычисленная форма напряжения в узле V4 (––), приведенные на фиг. 4. В итоге показана возможность увеличения ослабления в два раза(по сравнению с прототипом) воздействующего СКИ, а значит, достижимость технического результата.
Изобретение относится к электротехнике и может быть использовано для защиты электрических цепей от сверхкоротких импульсов. Техническим результатом является увеличенное ослабление СКИ. Для этого предлагается микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и двух боковых заземленных проводников на подложке, соединенных на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды. Причем каждый боковой заземленный проводник соединен с опорным проводником в точке, делящей линию на два отрезка так, что второй отрезок в два раза длиннее первого. 4 ил.
Микрополосковая линия, состоящая из опорного проводника в виде проводящего слоя, диэлектрической подложки на опорном проводнике, сигнального проводника в виде полоски на подложке и двух боковых заземленных проводников на подложке, соединенных на концах с опорным проводником, с параметрами линии, обеспечивающими разложение СКИ, воздействующего между сигнальным и опорным проводниками, на импульсы равной амплитуды, отличающаяся тем, что каждый боковой заземленный проводник соединен с опорным проводником в точке, делящей линию на два отрезка так, что второй отрезок в два раза длиннее первого.
МИКРОПОЛОСКОВАЯ ЛИНИЯ С ДВУМЯ БОКОВЫМИ ЗАЗЕМЛЕННЫМИ ПРОВОДНИКАМИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2021 |
|
RU2763853C1 |
ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2016 |
|
RU2637484C1 |
US 5406235 A1, 11.04.1995 | |||
УСОВЕРШЕНСТВОВАННАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2016 |
|
RU2656834C2 |
Авторы
Даты
2022-11-23—Публикация
2022-04-22—Подача