Изобретение относится к области энергетики, а более конкретно к технологии регенерации тепла отходящих газов газотурбинных установок и двигателей внутреннего сгорания. Изобретение может использоваться как для стационарных установок так и для транспортных. Перспективно использования изобретения и для автомобильного транспорта.
Известен способ утилизации тепла отходящих газов печей, который включает подачу топлива и части отходящих газов на каталитическую конверсию и подачу конвертированной смеси на сжигание. Смесь топлива с 20-50% общего количества отходящих газов перед подачей на каталитическую конверсию подогревают до температуры выше температуры начала конверсии теплом отходящих газов. При каталитической конверсии поглощенное тепло преобразуется в химическую энергию конвертированного топлива. Этот способ принят за прототип.
К недостаткам прототипа можно отнести следующее.
Высокие температуры проведения конверсии топлива (более 700оС для метана) не позволяют химически рекуперировать тепло отходящих газов с более низкой по сравнению с этой температурой.
Сильное разбавление топлива балластными (т. е. практически не принимающими участие в реакциях) газами, входящими в состав отходящих газов: N2, NOx и др. , в результате чего понижается производительность установки и скорость каталитического превращения топлива.
Происходит поглощение тепла отходящих газов только за счет теплоемкости топлива при его нагревании в теплообменнике, так как химический реактор разделен с теплообменником. Ввиду того, что температура топлива и части отходящих газов, подаваемых на каталитическую конверсию, превышает всего на 50-100оС температуру начала конверсии, изменение теплосодержания газов, которое используется для проведения конверсии, весьма мало по сравнению с теплопоглощением при конверсии, что вынуждает проводить многократный подогрев и подачу смеси на конверсию. Это требует многочисленных теплообменников и больших объемов катализатора.
Целью изобретения является повышение экономичности и улучшение экологических характеристик энергетических и силовых установок. Это возможно для определенного вида топлив при замене реакции конверсии топлива на реакцию каталитического разложения топлива. Необходимым условием для топлива является осуществимость для него низкотемпературного каталитического разложения с поглощением тепла.
На чертеже представлена схема осуществления химической регенерации тепла отходящих газов энергосиловых установок на основе каталитического разложения топлива.
Отходящие газы из камеры сгорания 6 после совершения работы на турбине 7 подаются в регенеративные теплообменники 4 и 5, в которых подогреваются топливо и окислитель непосредственно перед камерой сгорания 6, а затем подаются в теплообменник, который нагревает химический реактор. В последнем происходит испарение и каталитическое разложение топлива. Совмещение теплообменника и химического реактора (КРТ 2), которое можно осуществить, например, нанесением катализатора на внутреннюю поверхность обычного регенеративного теплообменника со стороны подачи углеводородного топлива, обеспечивает уменьшение теплового сопротивления, сокращение теплопотерь по сравнению с разделенной схемой, а также отбор тепла от всего объема отходящих газов. Разложение топлива в КРТ 2 проводится под давлением выше атмосферного, так как при этом увеличивается время пребывания горючего в КРТ и резко сокращается работа сжатия образующихся продуктов реакции компрессором 3. При этом работой жидкостного насоса 1 для подъема давления можно пренебречь по сравнению работой сжатия парогаза с помощью компрессора 3. На чертеже также обозначены привод 8, подача воздуха 9 и выброс отходящих газов 10.
Парогаз, полученный при разложении топлива, имеет более высокое теплосодержание и состоит из низкомолекулярных компонентов по сравнению с исходным топливом, что позволяет снизить расход исходного топлива, а также увеличить полноту сгорания и, следовательно, улучшить экологические характеристики выбрасываемых газов.
В качестве основного топлива могут использоваться: метанол или циклогексан, или метилциклогексан, или их композиции. Данные топлива обеспечивают хорошие энергетические и экологические характеристики установок. При проведении каталитического разложения этих топлив возможна химическая регенерация тепла отходящих газов до температур 150-200оС.
Отличительные признаки предлагаемого способа.
Химическую регенерацию тепла отходящих газов проводят в энергетических и силовых установках.
Вместо каталитической конверсии топлива с частью отходящих газов используется каталитическое разложение основного топлива установки.
В качестве основного топлива используются метанол или циклогексан, или метилциклогексан, или их композиции.
Химическую регенерацию тепла осуществляют при разложении топлива в каталитическом реакторе, совмещенном с теплообменником (КРТ).
Каталитическое разложение топлива в химическом регенеративном теплообменнике (КРТ) проводят при давлении выше атмосферного.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОМПЛЕКСНОЙ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ | 1996 |
|
RU2102124C1 |
СПОСОБ РЕГЕНЕРАЦИИ ХИМИКАТОВ СУЛЬФАТНОГО ПРОИЗВОДСТВА ЦЕЛЛЮЛОЗЫ | 1993 |
|
RU2069245C1 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЭКЗОТЕРМИЧЕСКИХ РЕАКЦИЙ | 1995 |
|
RU2084761C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗОВ ОТ ПРИМЕСЕЙ ОРГАНИЧЕСКИХ ВЕЩЕСТВ | 1995 |
|
RU2106185C1 |
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1997 |
|
RU2130209C1 |
ПРОТОЧНО-ЦИРКУЛЯЦИОННЫЙ МИКРОРЕАКТОР | 1994 |
|
RU2078611C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 1994 |
|
RU2081838C1 |
КАТАЛИТИЧЕСКИЙ РЕАКТОР-ПРИЕМНИК И СПОСОБ ОСУЩЕСТВЛЕНИЯ ТЕРМОХИМИЧЕСКИХ ПРЕВРАЩЕНИЙ СВЕТОВОЙ ЭНЕРГИИ | 1995 |
|
RU2100713C1 |
КАТАЛИЗАТОР ДЛЯ АЛКИЛИРОВАНИЯ БЕНЗОЛА ПРОПИЛЕНОМ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1995 |
|
RU2097129C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ | 1995 |
|
RU2085938C1 |
Сущность изобретения: отходящие газы из камеры сгорания 6 после совершения работы на турбине 7 подаются в регенеративные теплообменники 4 и 5, в которых подогреваются топливо и окислитель непосредственно перед камерой сгорания 6, а затем подаются в теплообменник, который нагревает химический реактор. В последнем происходит испарение и каталитическое разложение топлива. Совмещение теплообменника и химического реактора (КРТ2), которое можно осуществить, например, нанесением катализатора на внутреннюю поверхность обычного регенеративного теплообменника со стороны подачи углеводородного топлива, обеспечивает уменьшение теплового сопротивления, сокращение теплопотерь по сравнению с разделенной схемой, а также отбор тепла от всего объема отходящих газов. Разложение топлива в КРТ2 проводится под давлением выше атмосферного, так как при этом увеличивается время пребывания горючего в КРТ и резко сокращается работа сжатия образующихся продуктов реакции компрессором 3. При этом работой жидкостного насоса 1 для подъема давления можно пренебречь по сравнению с работой сжатия парогаза с помощью компрессора 3. 4 з. п. ф-лы, 1 ил.
Авторы
Даты
1994-04-30—Публикация
1991-05-20—Подача