СПОСОБ АНАЛИЗА ГАЗОВ С ПОМОЩЬЮ СВЧ-ЭНЕРГИИ Российский патент 1994 года по МПК G01N22/00 

Описание патента на изобретение RU2011971C1

Изобретение касается радиоизмерений и молекулярной спектроскопии и может быть использовано при абсорбционном молекулярном и изотопном анализе веществ в газовой и паровой фазах.

Известен способ измерения, при котором источник излучения с амплитудной модуляцией настраивают на характеристическую длину волны поглощения анализируемого газа. Переменный сигнал с детектора поступает на устройство обработки, которое вырабатывает постоянный сигнал, пропорци- ональный концентрации анализируемого газа.

Недостатком данного способа является низкая селективность, поскольку любая линия или полоса, находящаяся в окрестности аналитической линии и принадлежащая мешающему газу, содержащемуся в анализируемой смеси, внесет искажения в результат анализа.

Наиболее близким к изобретению является способ, при котором СВЧ-энергию генерируют по крайней мере на одной частоте, которую непрерывно изменяют так, что она проходит через частоту поглощения анализируемого газа и производят интегрирование поглощенной СВЧ-энергии.

Однако при таком способе для анализа необходима изолированная линия или полоса поглощения, поскольку на интегральное поглощение в диапазоне изменения частоты генератора влияют крылья близко расположенных линий и полос других газов, присутствующих в анализируемой смеси, а также сплошное поглощение; кроме того, любые изменения условий распространения СВЧ-излучения на пути от генератора к детектору также приводят к дополнительным погрешностям определения концентрации анализируемого газа.

Целью изобретения является повышение селективности и увеличение точности определения концентрации газов.

Это достигается тем, что при способе анализа с помощью СВЧ-энергии, заключающемся в генерации СВЧ-энергии на одной частоте, которую непрерывно изменяют так, что она проходит через частоту поглощения анализируемого газа, частоту генерации изменяют периодически по гармоническому закону. Центральную частоту диапазона сканирования частоты совмещают с центром линии поглощения анализируемого газа.

Регистрацию концентрации анализируемого газа ведут по амплитуде второй гармоники переменного сигнала, при этом контроль вклада линий поглощения сторонних газов, находящихся в смеси, осуществляют по амплитуде первой гармоники переменного сигнала с детектора.

Предлагаемый способ отличается от прототипа тем, что интегрирование интенсивности поглощенной энергии заменено регистрацией амплитуд гармоник (первой и второй). При этом уменьшается вклад линий поглощения сторонних газов, т. е. увеличивается селективность и появляется возможность одновременного контроля величины этого вклада. Кроме того, полностью исключаются неселективные помехи. Таким образом, предложенный способ соответствует критерию "новизна".

Известен способ регистрации концентрации газов по разности между максимальными и минимальными значениями производных от контура линии поглощения при модуляции частоты излучения перестраиваемого лазера.

Однако при этом способе глубина модуляции частоты мала по сравнению с шириной линии поглощения (по определению производной), что приводит к существенному снижению чувствительности, а регистрация разности между максимальными и минимальными значениями производных требует весьма сложного счетно-решающего блока.

При предлагаемом способе ограничения на глубину модуляции (девиации) частоты нет, что позволяет реализовать максимальную чувствительность с параллельным контролем уровня помех, а регистрация гармоник переменного сигнала не представляет технических трудностей.

Таким образом, предложенный способ проявляет новые свойства и соответствует критерию "существенные отличия".

Суть способа заключается в следующем. Частота излучения генератора изменяется по гармоническому закону с частотой Ω. Например,
ν= νгo

+m cosΩt, (1) где m - девиация частоты,
νог - центральная частота спектрального участка, в котором производится сканирование;
t - текущее время,
Если в диапазоне [ νог - m, νог + m] появится линия поглощения, контур которой в практическом газоанализе описывается кривой Лоренца
fν= , (2) где N - концентрация поглощающего газа;
γ- полуширина линии поглощения;
νол - центр линии поглощения;
σо - сечение поглощения при ν= νол, то в электрическом сигнале на детекторе появятся гармонические составляющие.

Этот процесс математически описывается разложением функции в ряд Фурье:
f(t) = +alcoslΩt, (3) где
al= f(t)cos(lΩt)dt, (4) где l = 0, 1, 2, 3, . . . ,
Т - период функции f(t).

В силу четности f(t) все другие члены ряда Фурье обращаются в нуль.

Анализ гармоник с l = 1,2 показывает, что при настройке центральной частоты участка, в котором производится сканирование на центр линии поглощения ( νог = νол), гармоника с l = 1 обращается в нуль.

График зависимости амплитуды второй гармоники с l = 2 от величины девиации частоты m приведен на фиг. 1. Как видно из фиг. 1, максимум амплитуды второй гармоники достигается при значении девиации частоты m = 2.2γ . При этом реализуется максимальная чувствительность метода.

Для рассмотрения влияния спектральных линий поглощения сторонних газов берут функцию f(ν) в следующем виде:
f(ν)= (5) где С - частотное расстояние между линиями поглощения анализируемого и стороннего газов.

В интегральном методе (прототип) сигнал будет пропорционален
F= N1σ01γ21

+ N2σ02γ22
(6)
Пределы интегрирования приняты равными величине девиации частоты при регистрации максимальной амплитуды второй гармоники, чтобы провести сравнение методов в равных условиях.

При одинаковых коэффициентах поглощения в линиях анализируемого и стороннего газов (N1σ01 γ12= N2σ02 γ22) зависимость F от спектрального интервала между линиями для интегрального метода имеет вид, представленный кривой 1 на фиг. 2. Ход кривой 1 на фиг. 2. показывает, что вклад в F величиной 10% от линии стороннего газа наступает при приближении ее на 5γ к аналитической линии (отмечено вертикальной чертой).

Аналогично оценивается вклад линии стороннего газа в амплитуду второй гармоники от аналитической линии путем интегрирования выражения, получающегося при подстановке выражения (5) и (4). График зависимости амплитуды второй гармоники от частотного интервала между линиями анализируемого и стороннего газов приведен на фиг. 2, кривая 2. Как видно из поведения кривой 2 на фиг. 2, вклад величиной 10% в амплитуду второй гармоники имеет место при удалении линии стороннего газа на 2,5γ .

Таким образом, при прочих равных условиях для метода, основанного на регистрации амплитуды второй гармоники, требуется в два раза меньший спектральный интервал, свободный от линий сторонних газов, по сравнению с интегральным методом, что весьма существенно при анализе многокомпонентных газовых смесей. Кроме того, регистрация наряду с второй гармоникой амплитуды первой гармоники дает возможность оценить величину вклада линий поглощения сторонних газов. На фиг. 2 кривой 3 представлен график зависимости амплитуды первой гармоники от частотного удаления линии поглощения стороннего газа от аналитической линии. Как видно из поведения кривой 3 на фиг. 2, амплитуда первой гармоники весьма чувствительна к воздействию крыла линии поглощения стороннего газа, фаза первой гармоники дает информацию о том, с какой стороны от аналитической линии поглощения находится помеха. При отсутствии помех со стороны линий поглощения других газов амплитуда первой гармоники в центре аналитической линии обращается в нуль.

Рассмотрим влияние неселективных потерь зондирующего излучения - ослабление в континууме полосы поглощения, вклад аэрозольного ослабления, изменение параметров элементов тракта распространения излучения, на сигнал в интегральном методе (прототип) и на амплитуду второй гармоники.

Коэффициент ослабления в этом случае можно представить в виде
k = f (ν ) + b, где b - неселективные потери.

Тогда для интегрального метода
F1= N f(ν)dν+b dν. (7) Таким образом, вклад неселективности потерь излучения пропорционален величине интервала сканирования частоты зондирующего излучения и уровню неселективных потерь Δ νи b соответственно.

Для амплитуды второй гармоники имеет место следующее выражение:
a2= f(t)cos(2Ωt)dt+ cos(2Ωt)dt (8) В результате того, что интеграл от cos(2Ω t) в указанных пределах интегрирования обращается в нуль, то вклада неселективных потерь в амплитуду второй гармоники нет.

Практически способ осуществляют следующим образом.

Генерируют СВЧ-излучение, частота которого промодулирована по гармоническому закону. Центральную частоту диапазона сканирования совмещают с центром линии поглощения анализируемого газа. На детекторе поглощения, например радиоакустическом, возникают гармоники переменного сигнала, вызванные поглощением частотно-модулированного излучения в спектральной линии анализируемого газа. С помощью электронного фильтра выделяют первую и вторую гармоники переменного сигнала и измеряют их амплитуды. По величине амплитуды второй гармоники судят о содержании анализируемого газа, а по амплитуде первой гармоники - о вкладе соседних спектральных линий сторонних газов, находящихся в анализируемой смеси.

Затем центральную частоту участка сканирования перемещают на центр спектральной линии другого газа и проводят измерения в порядке, аналогичном описанному.

Предложенный способ был реализован на СВЧ-спектрометре. Анализировали смесь газов: сероводород с метанолом. На фиг. 3 представлен участок спектра указанной смеси газов в диапазоне 168.70 ГГЦ. . . 168.90 ГГц. Линии сероводорода (кривая 1) и метанола (кривая 2) накладываются друг на друга, что обусловит значительную погрешность в определении концентрации способом, заявляемом в прототипе.

На фиг. 5 представлена спектральная зависимость амплитуды второй гармоники в том же диапазоне частот, что и на фиг. 3. Симметричность кривых в центральной части спектральных линий при предложенном способе обеспечивает получение неискаженных данных о концентрации как сероводорода, так и метанола.

На фиг. 4 представлена спектральная зависимость амплитуды первой гармоники от тех же линий поглощения, что и на фиг. 3. В районе центров линий поглощения амплитуда первой гармоники обращается в нуль, что является подтверждением малости величины искажений от соседних линий поглощения, налагаемых на амплитуду второй гармоники в центре аналитических линий поглощения.

Таким образом, предложенный способ анализа газов позволяет повысить селективность метода измерения концентрации газов и снизить требования к изолированности аналитических линий поглощения (линии сторонних газов могут находиться на расстоянии, вдвое меньшем от аналитической линии, чем по способу-прототипу; ликвидировать влияние вклада неселективных потерь в тракте распространения излучения и повысить точность измерения концентрации газов; осуществлять одновременный контроль вклада поглощения сторонними газами, присутствующими в анализируемой смеси.

Похожие патенты RU2011971C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГАЗА 2000
  • Агишев Р.Р.
  • Сагдиев Р.К.
RU2170922C1
ОПТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР 1987
  • Булгаков А.Б.
SU1494712A1
Спектральный способ определения концентрации веществ 1984
  • Курейчик Константин Петрович
  • Макаров Владимир Леонидович
  • Мавлютов Мансур Мавлютович
SU1278613A1
Способ атомно-абсорбционного анализа 1986
  • Шолупов Сергей Евгеньевич
  • Афанасов Юрий Анатольевич
  • Машьянов Николай Романович
  • Свешников Глеб Борисович
  • Туркин Юрий Иванович
SU1672315A1
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO И УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO 2008
  • Степанов Евгений Валерьевич
RU2384837C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ОБЪЕКТА 2016
  • Усанов Дмитрий Александрович
  • Скрипаль Анатолий Владимирович
  • Астахов Елисей Игоревич
  • Добдин Сергей Юрьевич
RU2629651C1
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ КОМПОНЕНТ СРЕДЫ 1993
  • Виноградов В.В.
  • Галкин Ю.С.
  • Харченко В.Н.
RU2085910C1
СПОСОБ АТОМНО-АБСОРБЦИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Корепанов В.И.
  • Лисицын В.М.
  • Олешко В.И.
RU2157988C2
СПОСОБ ИЗМЕРЕНИЯ АБСОЛЮТНОГО РАССТОЯНИЯ 2020
  • Скрипаль Анатолий Владимирович
  • Добдин Сергей Юрьевич
  • Джафаров Алексей Владимирович
RU2738876C1
СПОСОБ АКТИВНОГО КОНТРОЛЯ УРОВНЯ НЕСИНУСОИДАЛЬНОСТИ НАПРЯЖЕНИЯ И ТОКА 2003
  • Большанин Г.А.
RU2262174C2

Иллюстрации к изобретению RU 2 011 971 C1

Реферат патента 1994 года СПОСОБ АНАЛИЗА ГАЗОВ С ПОМОЩЬЮ СВЧ-ЭНЕРГИИ

Использование: способы абсобционного молекулярного и изотопного анализа веществ в газовой и паровой фазах. Сущность изобретения: способ заключается в том, что генерируют СВЧ-энергию по меньшей мере на одной частоте, которую непрерывно изменяют по гармоническому закону, центральную частоту диапазона сканирования совмещают с центром линии поглощения анализируемого газа, а о концентрации газа судят по амплитуде второй гармоники переменного сигнала на детекторе поглощения, при этом о величине вклада линий поглощения мешающих компонентов смеси судят по амплитуде первой гармоники. 5 ил.

Формула изобретения RU 2 011 971 C1

СПОСОБ АНАЛИЗА ГАЗОВ С ПОМОЩЬЮ СВЧ-ЭНЕРГИИ, заключающийся в генерации СВЧ-энергии на одной частоте, которую непрерывно изменяют так, что она проходит через частоту поглощения анализируемого газа, отличающийся тем, что, с целью увеличения точности определения концентрации газов и повышения селективности газоанализа, частоту генерации изменяют периодически по гармоническому закону, центральную частоту диапазона сканирования совмещают с центром линии поглощения анализируемого газа, а по амплитуде второй гармоники сигнала от провзаимодействовавшей СВЧ-энергии - 0 концентрации анализируемого газа, при этом контроль вклада линий поглощения сторонних газов, присутствующих в анализируемой смеси, осуществляют по амплитуде первой гармоники.

RU 2 011 971 C1

Авторы

Улеников О.Н.

Хмельницкий Г.С.

Даты

1994-04-30Публикация

1991-04-01Подача